【題目】自貢某個工廠于2016年下半年對生產(chǎn)工藝進行了改造(每半年為一個生產(chǎn)周期),從2016年一年的產(chǎn)品中用隨機抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如圖所示,已知每個生產(chǎn)周期內與其中位數(shù)誤差在±5范圍內(含±5)的產(chǎn)品為優(yōu)質品,與中位數(shù)誤差在±15范圍內(含±15)的產(chǎn)品為合格品(不包括優(yōu)質品),與中位數(shù)誤差超過±15的產(chǎn)品為次品.企業(yè)生產(chǎn)一件優(yōu)質品可獲利潤20元,生產(chǎn)一件合格品可獲利潤10元,生產(chǎn)一件次品要虧損10元.
(Ⅰ)求該企業(yè)2016年一年生產(chǎn)一件產(chǎn)品的利潤的分布列和期望;
(Ⅱ)是否有95%的把握認為“優(yōu)質品與生產(chǎn)工藝改造有關”.
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2= .
【答案】解:(Ⅰ)上半年的數(shù)據(jù)為:13,14,18,21,22,26,27,29,31,34,35,35,35,38, 42,43,45,46,46,53,54,57,58,61,62;
“中位數(shù)”為35,優(yōu)質品有6個,合格品有10個,次品有9個;
下半年的數(shù)據(jù)為:13,18,20,24,24,28,29,30,31,32,33,33,35,36,37,
40,41,42,42,43,47,49,51,58,62;
“中位數(shù)”為35,優(yōu)質品有9個,合格品有11個,次品有5個;
則這個樣本的50件產(chǎn)品的利潤的頻率分布表為
利潤 | 頻數(shù) | 頻率 |
20 | 15 | 0.3 |
10 | 21 | 0.42 |
﹣10 | 14 | 0.28 |
所以,該企業(yè)2016年一年生產(chǎn)一件產(chǎn)品的利潤的分布列為
頻率 | 利潤 | |
優(yōu)質品 | 0.3 | 6 |
合格品 | 0.42 | 4.2 |
次品 | 0.28 | ﹣2.8 |
期望值為6+4.2﹣2.8=7.4;
(Ⅱ)由題意,填寫2×2列聯(lián)表如下;
上半年 | 下半年 | ||
優(yōu)質品 | 6 | 9 | 15 |
非優(yōu)質品 | 19 | 16 | 35 |
25 | 25 | 50 |
計算觀測值K2= ≈0.857,
由于0.857<3.841,
所以沒有95%的把握認為“優(yōu)質品與生產(chǎn)工藝改造有關”.
【解析】(Ⅰ)根據(jù)上半年和下半年的數(shù)據(jù),得出這50件產(chǎn)品的利潤頻率分布表,寫出生產(chǎn)一件產(chǎn)品的利潤分布列,計算期望值;(Ⅱ)填寫2×2列聯(lián)表,計算觀測值K2 , 比較臨界值得出結論.
科目:高中數(shù)學 來源: 題型:
【題目】過拋物線y2=2px(p>0)的焦點F的直線與拋物線相交于M、N兩點,自M、N向準線l作垂線,垂足分別為M1、N1.
(1)求;
(2)記△FMM1、△FM1N1、△FNN1的面積分別為、、,求
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列{an}的前n項和為Sn , 公比q>0,S2=2a2﹣2,S3=a4﹣2.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn= ,Tn為{bn}的前n項和,求T2n .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= x2+alnx(a<0).
(1)若函數(shù)f(x)的圖象在點(2,f(2))處的切線斜率為 ,求實數(shù)a的值;
(2)求f(x)的單調區(qū)間;
(3)設g(x)=x2﹣(1﹣a)x,當a≤﹣1時,討論f(x)與g(x)圖象交點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義域為R的偶函數(shù)f(x)滿足x∈R,有f(x+2)=f(x)﹣f(1),且當x∈[2,3]時,f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(x+1)恰有三個零點,則a的取值范圍是( )
A.(0, )
B.(0, )
C.( , )
D.( , )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x﹣ |+|x+2a|(a∈R,且a≠0)
(Ⅰ)當a=﹣1時,求不等式f(x)≥5的解集;
(Ⅱ)證明:f(x)≥2 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的內角A,B,C的對邊分別為a,b,c,2acosC=bcosC+ccosB.
(1)求角C的大。
(2)若c=,a2+b2=10,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com