設函數(shù)f(x)=ax2+8x+3(a<0),對于給定的負實數(shù)a,有一個最大正數(shù)l(a),使得
x∈[0,l(a)]時,不等式|f(x)|≤5都成立.
(1)當a=-2時,求l(a)的值;
(2)a為何值時,l(a)最大,并求出這個最大值,證明你的結論.
【答案】分析:由題意(1)由于a=-2,代入函數(shù)f(x)=ax2+8x+3(a<0),使得f(x)的解析式具體,畫出圖形即可;
(2)由題意及二次函數(shù)為開口向下的要使x∈[0,l(a)]時,不等式|f(x)|≤5都成立,利用分類討論的思想可以求解.
解答:解:(1)當a=-2,f(x)=-2x2+8x+3最大值11,
令|f(x)|=5只須考慮-2x2+8x+3=5
得x=2±.如圖,l(a)=2-
(2)f(x)=ax2+8x+3,
∵a<0,對稱軸,f(x)的最大值,
即a>-8時,取x2+8x+3=5得x=
如圖
即a≤-8時,
取-(ax2+8x+3)=5得,

(當a=-8時取等號)
∴當a=-8時,l(a)最大,最大值是
點評:此題考查了二次函數(shù)在閉區(qū)間上的最值,還考查了分類討論的思想及無理不等式的求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax+
xx-1
(x>1),若a是從1,2,3三個數(shù)中任取一個數(shù),b是從2,3,4,5四個數(shù)中任取一個數(shù),求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax+b的圖象經(jīng)過點(1,7),又其反函數(shù)的圖象經(jīng)過點(4,0),求函數(shù)的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax+bx-cx,其中a,b,c是△ABC的三條邊,且c>a,c>b,則“△ABC為鈍角三角形”是“?x∈(1,2),使f(x)=0”( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•楊浦區(qū)一模)(文)設函數(shù)f(x)=ax+1-2(a>1)的反函數(shù)為y=f-1(x),則f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設函數(shù)f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a為如圖所示的程序框圖中輸出的結果,則f(x)的展開式中常數(shù)項是( 。
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步練習冊答案