【題目】已知函數(shù).

⑴求函數(shù)的單調(diào)區(qū)間;

⑵如果對(duì)于任意的, 恒成立,求實(shí)數(shù)的取值范圍;

⑶設(shè)函數(shù), .過(guò)點(diǎn)作函數(shù)的圖象

的所有切線,令各切點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列,求數(shù)列的所有項(xiàng)之和的值.

【答案】⑴增區(qū)間為;減區(qū)間為;⑵;⑶.

【解析】試題分析:(1)求出函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)大于0求其增區(qū)間,導(dǎo)函數(shù)小于0求其減區(qū)間;
(2)構(gòu)造輔助函數(shù),把問(wèn)題轉(zhuǎn)化為求時(shí)

,然后對(duì)k的值進(jìn)行分類討論,k在不同取值范圍內(nèi)時(shí)的的最小值,由最小值大于等于0得到k的取值范圍;
(3)把的解析式代入 ,求出函數(shù)的導(dǎo)函數(shù),設(shè)出切點(diǎn)坐標(biāo),求出函數(shù)在切點(diǎn)處的導(dǎo)數(shù),由點(diǎn)斜式寫出切線方程,M的坐標(biāo)代入切線方程,得到關(guān)于切點(diǎn)橫坐標(biāo)的三角方程,利用函數(shù)圖象交點(diǎn)分析得到切點(diǎn)的橫坐標(biāo)關(guān)于對(duì)稱成對(duì)出現(xiàn),最后由給出的自變量的范圍得到數(shù)列的所有項(xiàng)之和S的值.

試題分析:⑴

的增區(qū)間為 ;減區(qū)間為 .

⑵令,要使恒成立,只需當(dāng)時(shí),

,令,則對(duì)恒成立

上是增函數(shù),則

①當(dāng)時(shí), 恒成立, 上為增函數(shù) 滿足題意;

②當(dāng)時(shí), 上有實(shí)根, 上是增函數(shù)

則當(dāng)時(shí), , 不符合題意;

③當(dāng)時(shí), 恒成立, 上為減函數(shù),

不符合題意

,即.

設(shè)切點(diǎn)坐標(biāo)為,則切線斜率為

從而切線方程為

,這兩個(gè)函數(shù)的圖象均關(guān)于點(diǎn)對(duì)稱,則它們交點(diǎn)的橫坐標(biāo)也關(guān)于對(duì)稱,從而所作的所有切線的切點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列的項(xiàng)也關(guān)于成對(duì)出現(xiàn),又在共有1008對(duì),每對(duì)和為.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司在迎新年晚會(huì)上舉行抽獎(jiǎng)活動(dòng),有甲、乙兩個(gè)抽獎(jiǎng)方案供員工選擇;

方案甲:?jiǎn)T工最多有兩次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)的中獎(jiǎng)率為.第一次抽獎(jiǎng),若未中獎(jiǎng),則抽獎(jiǎng)結(jié)束.若中獎(jiǎng),則通過(guò)拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎(jiǎng),規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎(jiǎng)金,不進(jìn)行第二次抽獎(jiǎng);若正面朝上,員工則須進(jìn)行第二次抽獎(jiǎng),且在第二次抽獎(jiǎng)中,若中獎(jiǎng),獲得獎(jiǎng)金1000元;若未中獎(jiǎng),則所獲獎(jiǎng)金為0元.

方案乙:?jiǎn)T工連續(xù)三次抽獎(jiǎng),每次中獎(jiǎng)率均為,每次中獎(jiǎng)均可獲獎(jiǎng)金400元.

(1)求某員工選擇方案甲進(jìn)行抽獎(jiǎng)所獲獎(jiǎng)金(元)的分布列;

(2)某員工選擇方案乙與選擇方案甲進(jìn)行抽獎(jiǎng),試比較哪個(gè)方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】讀下列所給程序,依據(jù)程序畫出程序框圖并說(shuō)明其功能.

INPUT “輸入三個(gè)正數(shù)a,bc;a,bc

IF ab>c AND ac>b AND bc>a THEN

p(abc)/2

SSQR(p*(pa)*(pb)*(pc))

PRINT “三角形的面積SS

ELSE

PRINT “構(gòu)不成三角形”

END IF

END

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)若,求曲線處的切線方程;

(2)若當(dāng)時(shí), ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知菱形中,對(duì)角線相交于一點(diǎn), ,將沿著折起得,連接.

(1)求證:平面平面

(2)若點(diǎn)在平面上的投影恰好是的重心,求直線與底面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面幾種推理過(guò)程是演繹推理的是 (  )

A. 某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人數(shù)超過(guò)50

B. 兩條直線平行,同旁內(nèi)角互補(bǔ),如果∠A與∠B是兩條平行直線的同旁內(nèi)角,則∠AB180°

C. 由平面三角形的性質(zhì),推測(cè)空間四邊形的性質(zhì)

D. 在數(shù)列{an}中,a11,an (an1)(n≥2),由此歸納出{an}的通項(xiàng)公

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))的圖象與直線相切,當(dāng)恰有一個(gè)零點(diǎn)時(shí),實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O:x2+y2=1和定點(diǎn)A(2,1),由O外一點(diǎn)P(a,b)向O引切線PQ,切點(diǎn)為Q,且滿足|PQ|=|PA|.

(1)求實(shí)數(shù)a,b間滿足的等量關(guān)系.

(2)求線段PQ長(zhǎng)的最小值.

(3)若以P為圓心所作的P與O有公共點(diǎn),試求半徑取最小值時(shí)P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x+ ,且函數(shù)y=f(x)的圖像經(jīng)過(guò)點(diǎn)(1,2).
(1)求m的值;
(2)判斷函數(shù)的奇偶性并加以證明;
(3)證明:函數(shù)f(x)在(1,+∞)上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案