如圖, 橢圓C:+=1的右頂點是A,上下兩個頂點分別為B、D,四邊形DAMB是矩形(O為坐標(biāo)原點),點E、P分別是線段OA、AM的中點。

(1)求證:直線DE與直線BP的交點在橢圓C上.

(2)過點B的直線l1、l2與橢圓C分別交于R、S(不同于B點),且它們的斜率k1、k2滿足k1*k2=-,求證:直線RS過定點,并求出此定點的坐標(biāo)。

 

【答案】

【解析】

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖橢圓C的方程為
y2
a2
+
x2
b2
=1(a>b>0)
,A是橢圓C的短軸左頂點,過A點作斜率為-1的直線交橢圓于B點,點P(1,0),且BP∥y軸,△APB的面積為
9
2

(1)求橢圓C的方程;
(2)在直線AB上求一點M,使得以橢圓C的焦點為焦點,且過M的雙曲線E的實軸最長,并求此雙曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•包頭一模)如圖橢圓C:
x2
4
+
y2
3
=1
的右頂點是A,上下兩個頂點分別為B,D,四邊形OANB是矩形(O為原點),點E,M分別為線段OA,AN的中點.
(Ⅰ)證明:直線DE與直線BM的交點在橢圓C上;
(Ⅱ)若過點E的直線交橢圓于R,S兩點,K為R關(guān)于x軸的對稱點(R,K,E不共線),問:直線KS是否經(jīng)過x軸上一定點,如果是,求這個定點的坐標(biāo),如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖橢圓C的方程為,A是橢圓C的短軸左頂點,過A點作斜率為﹣1的直線交橢圓于B點,點P(1,0),且BP∥y軸,△APB的面積為

(1)求橢圓C的方程;

(2)在直線AB上求一點M,使得以橢圓C的焦點為焦點,且過M的雙曲線E的實軸最長,并求此雙曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年湖南省十校高三3月聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖橢圓C的方程為,A是橢圓C的短軸左頂點,過A點作斜率為-1的直線交橢圓于B點,點P(1,0),且BP∥y軸,△APB的面積為
(1)求橢圓C的方程;
(2)在直線AB上求一點M,使得以橢圓C的焦點為焦點,且過M的雙曲線E的實軸最長,并求此雙曲線E的方程.

查看答案和解析>>

同步練習(xí)冊答案