“m<2”是“一元二次不等式x2+mx+1>0的解集為R”的
 
條件(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填空)
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)一元二次不等式的解法,利用充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:若一元二次不等式x2+mx+1>0的解集為R,
則判別式△=m2-4<0,解得-2<m<2,
則m<2是-2<m<2的必要不充分條件,
故“m<2”是“一元二次不等式x2+mx+1>0的解集為R”必要不充分條件,
故答案為:必要不充分條件.
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,根據(jù)一元二次不等式的等價(jià)條件是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且c2=a2+b2-ab.
(Ⅰ)若tanA-tanB=
3
3
(1+tanA•tanB),求角B;
(Ⅱ)設(shè)
m
=(sinA,1),
n
=(3,cos2A),試求
m
n
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosx,sinx),
b
=(
3
cosx,cosx),若f(x)=
a
b
+
3

(1)求函數(shù)f(x)的最小正周期和圖象的對(duì)稱軸方程;
(2)求函數(shù)f(x)在區(qū)間[-
12
,
π
12
)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直平行六面體ADD1A1-BCC1B1中,BC=1,CC1=2,AB=
2
,∠BCC1=
π
3

(Ⅰ)求證:BC1⊥平面ABC;
(Ⅱ)當(dāng)E為CC1的中點(diǎn)時(shí),求二面角A-B1E-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
1
4
,2an+1=an2+2an,用[x]表示不超過x的最大整數(shù),Sn表示數(shù)列{
1
an+2
}的前n項(xiàng)和.現(xiàn)給出下列命題:
①數(shù)列{an}單調(diào)遞增;
②數(shù)列{an+1-an}單調(diào)遞減;
1
an+1
=
1
an
-
1
an+2

④[S2013]=3.
以上命題中正確的是
 
(填寫你認(rèn)為正確的所有命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知對(duì)任意平面向量
AB
=(x,y),把
AB
繞其起點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)θ角得到向量:
AP
=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)θ角得到點(diǎn)P.
(1)已知平面內(nèi)點(diǎn)A(1,2),點(diǎn)B(-1,2-2
3
),把點(diǎn)B繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)
π
3
后得到點(diǎn)P的坐標(biāo)是
 

(2)設(shè)平面內(nèi)曲線C:y=-
1
2x
上的每一點(diǎn)繞坐標(biāo)原點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)
π
4
后得到的點(diǎn)的軌跡方程是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的主視圖與俯視圖如圖,主視圖與左視圖相同,且圖中的四邊形都是邊長為2的正方形,兩條虛線互相垂直,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

汽車從路燈正下方開始向前作變速行駛,汽車影長為l(t)=(t-1)3+t+1(t的單位是秒),則汽車影長變化最快的時(shí)刻是第
 
秒.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列An:a1,a2…an(n∈N*,n≥3)滿足a1=an=0,且當(dāng)2≤k≤n(k∈N* )時(shí),(ak-ak-12=1,
令S(An)=
n
i=1
ai
.則
(1)S(A5)的所有可能的值構(gòu)成的集合為
 
;
(2)當(dāng)An存在時(shí),S(An)的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案