在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且c2=a2+b2-ab.
(Ⅰ)若tanA-tanB=
3
3
(1+tanA•tanB),求角B;
(Ⅱ)設(shè)
m
=(sinA,1),
n
=(3,cos2A),試求
m
n
的最大值.
考點(diǎn):余弦定理,平面向量數(shù)量積的運(yùn)算
專題:解三角形
分析:(I)利用余弦定理、兩角和差的正切公式、正切函數(shù)的單調(diào)性即可得出.
(II)利用數(shù)量積運(yùn)算、倍角公式、二次函數(shù)的單調(diào)性即可得出.
解答: 解:(I)∵c2=a2+b2-ab,∴cosC=
a2+b2-c2
2ab
=
ab
2ab
=
1
2

∵C∈(0,π),∴C=
π
3

∵tanA-tanB=
3
3
(1+tanA•tanB),∴tan(A-B)=
tanA-tanB
1+tanAtanB
=
3
3

∵A,B∈(0,
3
)
,∴-
3
<A-B<
3
,∴A-B=
π
6

∴B=
3
-A
=
3
-(B+
π
6
)
,解得B=
π
4

(2)
m
n
=3sinA+cos2A=-2sin2A+3sinA+1=-2(sinA-
3
4
)2+
17
8
,
由(I)可得A∈(0,
3
)
,∴當(dāng)sinA=
3
4
時(shí),
m
n
取得最大值
17
8
點(diǎn)評(píng):本題考查了余弦定理、兩角和差的正切公式、正切函數(shù)的單調(diào)性、數(shù)量積運(yùn)算、倍角公式、二次函數(shù)的單調(diào)性,考查了推理能力和計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線頂點(diǎn)在原點(diǎn),開口向上,A為拋物線上一點(diǎn),F(xiàn)為拋物線焦點(diǎn),M為準(zhǔn)線l與y軸的交點(diǎn)已知a=|AM|=
17
,|AF|=3,求此拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,△ABC中,∠B=90°,AB=
2
,BC=1,D、E兩點(diǎn)分別是線段AB、AC的中點(diǎn),現(xiàn)將△ABC沿DE折成直二面角A-DE-B.

(Ⅰ)求證:面ADC⊥面ABE;
(Ⅱ)求直線AD與平面ABE所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了比較注射A,B兩種藥物后產(chǎn)生的皮膚皰疹的面積,選200只家兔做試驗(yàn),將這200只家兔隨機(jī)地分成兩組,每組100只,其中一組注射藥物A,另一組注射藥物B.
(1)甲、乙是200只家兔中的2只,求甲、乙分在不同組的概率;
(2)表1和表2分別是注射藥物A和B后的試驗(yàn)結(jié)果.(皰疹面積單位:mm2
表1:注射藥物A后皮膚皰疹面積的頻數(shù)分布表
皰疹面積[60,65)[65,70)[70,75)[75,80)
頻數(shù)30402010
表2注射藥物B后皮膚皰疹面積的頻數(shù)分布表
皰疹面積[60,65)[65,70)[70,75)[75,80)[80,85)
頻數(shù)1025203015
(Ⅰ)完成下面頻率分布直方圖,并比較注射兩種藥物后皰疹面積的中位數(shù)大小;
(Ⅱ)分別估計(jì)出注射A,B兩種藥物后產(chǎn)生的皮膚皰疹的面積不小于70mm2的概率各是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2(x>0),設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N*),其中x1=1
(1)求證數(shù)列{xn}是等比數(shù)列,并求其通項(xiàng)公式;
(2)令bn=n•xn,是否存在最小的正整數(shù)M,使得對(duì)任意n∈N*,都有b1+b2+b3+…+bn<M恒成立?若存在,求出M的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
a+1
2
x2+bx+a(a,b∈R),且其導(dǎo)函數(shù)f′(x)的圖象過原點(diǎn).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的圖象在x=3處的切線方程;
(2)若存在x≤-2,使得f′(x)=-9,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,已知a2=2,a5=16,求:
(1)a1與公比q的值;
(2)數(shù)列前6項(xiàng)的和S6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx-
m
x
,g(x)=2lnx
(1)當(dāng)m=2時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)m=1時(shí),判斷方程f(x)=g(x)的實(shí)根個(gè)數(shù);
(3 )若x∈(1,e]時(shí),不等式f(x)-g(x)<2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“m<2”是“一元二次不等式x2+mx+1>0的解集為R”的
 
條件(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填空)

查看答案和解析>>

同步練習(xí)冊答案