(2011•浙江)下列命題中錯誤的是( 。
A.如果平面α⊥平面β,那么平面α內(nèi)一定存在直線平行于平面β
B.如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ
D.如果平面α⊥平面β,那么平面α內(nèi)所有直線都垂直于平面β
D
由題意可知:
A、結(jié)合實物:教室的門面與地面垂直,門面的上棱對應(yīng)的直線就與地面平行,故此命題成立;
B、假若平面α內(nèi)存在直線垂直于平面β,根據(jù)面面垂直的判定定理可知兩平面垂直.故此命題成立;
C、結(jié)合面面垂直的性質(zhì)可以分別在α、β內(nèi)作異于l的直線垂直于交線,再由線面垂直的性質(zhì)定理可知所作的垂線平行,進而得到線面平行再由線面平行的性質(zhì)可知所作的直線與l平行,又∵兩條平行線中的一條垂直于平面那么另一條也垂直于平面,故命題成立;
D、舉反例:教室內(nèi)側(cè)墻面與地面垂直,而側(cè)墻面內(nèi)有很多直線是不垂直與地面的.故此命題錯誤.
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在幾何體ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1.
(1)設(shè)平面ABE與平面ACD的交線為直線,求證:∥平面BCDE;
(2)設(shè)F是BC的中點,求證:平面AFD⊥平面AFE;
(3)求幾何體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
如圖1,直角梯形中, 四邊形是正方形,,.將正方形沿折起,得到如圖2所示的多面體,其中面,中點.
(1) 證明:∥平面;
(2) 求三棱錐的體積.
     
圖1                     圖2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知四棱錐P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一點.

⑴求證:平面PAD⊥面PBD;
⑵當(dāng)Q在什么位置時,PA∥平面QBD?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m,n是兩條不同的直線,α,β,γ是三個不同的平面,有下列四個命題:
①若m?β,α⊥β,則m⊥α;②若α∥β,m?α,則m∥β;③若n⊥α,n⊥β,m⊥α,則m⊥β;④若α⊥γ,β⊥γ,m⊥α,則m⊥β.
其中正確命題的序號是(  )
A.①③B.①②C.③④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若兩條異面直線所成的角為,則稱這對異面直線為“黃金異面直線對”,在連接正方體各頂點的所有直線中,“黃金異面直線對”共有(    )
A.12對B.18對C.24對D.30對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,三角形ABC是直角三角形,ACB=,PA平面ABC,
此圖形中有____________個直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(2014·黃岡模擬)設(shè)a,b是平面α內(nèi)兩條不同的直線,l是平面α外的一條直線,則“l(fā)⊥a,l⊥b”是“l(fā)⊥α”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是兩條不同直線,是兩個不同平面,下列四個命題中正確的是(  )
A.若所成的角相等,則B.若,,則
C.若,,則D.若,,則

查看答案和解析>>

同步練習(xí)冊答案