【題目】已知函數(shù)f(x)= ,定義域為[0,2π],g(x) 為f(x) 的導(dǎo)函數(shù).
(1)求方程g(x)=0 的解集;
(2)求函數(shù)g(x) 的最大值與最小值;
(3)若函數(shù)F(x)=f(x)﹣ax 在定義域上恰有2個極值點,求實數(shù)a 的取值范圍.
【答案】
(1)解:∵f(x)= ,定義域為[0,2π],
∴f′(x)=﹣ + ,
∵g(x) 為f(x) 的導(dǎo)函數(shù),
∴由方程g(x)=0 得 =0,
解得 ,或x= ,
∴方程g(x)=0 的解集為{ , }
(2)解:∵ + ﹣ =﹣2× ,
令g′(x)=0,解得x= 或x= ,
x | 0 | (0, ) | ( , ) | ( ,2π) | 2π | ||
g′(x) | ﹣ | 0 | 0 | 0 | ﹣ | ||
g(x) | 1 | ↓ | ↑ | ↓ | e﹣2π |
∴g(x)的最大值為g(0)=1,
∴g(x)的最小值為g( )=﹣
(3)解:∵ ﹣a=g(x)﹣a,
∴函數(shù)F(x)=f(x)﹣ax在定義域上恰有2個極值點,
等價于g(x)﹣a=0在定義域外上恰有兩個零點且零點處異號,
即y=a的圖象恰恰有兩個交點,
由(2)知F′(0)=g(0)﹣a=1﹣a,
F′(2π)=g(2π)﹣a=e﹣2π﹣a,
,
F′(2π)=g(2π)﹣a=e﹣2π﹣a,
若 ,則F′(2π)<0,
∴F′(x)=0只有一個零點,不成立.∴ .
若 ,即a= 在x= 處同號,不成立;
若F′(2π)≤0,則F′(x)=0有3個零點,不成立.
∴只有F′(2π)>0,
∴滿足條件為: ,
解得 <a<e﹣2π或a= .
∴實數(shù)a 的取值范圍是{a| <a<e﹣2π或a= }
【解析】(1)f′(x)=﹣ + ,由方程g(x)=0 得 =0,由此能求出方程g(x)=0 的解集.(2) + ﹣ =﹣2× ,令g′(x)=0,解得x= 或x= ,由此利用導(dǎo)數(shù)性質(zhì)能求出g(x)的最值.(3)函數(shù)F(x)=f(x)﹣ax在定義域上恰有2個極值點,等價于y=a的圖象恰恰有兩個交點,由此利用分類討論思想能求出實數(shù)a 的取值范圍.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識,掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值,以及對函數(shù)的最大(小)值與導(dǎo)數(shù)的理解,了解求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司過去五個月的廣告費支出與銷售額(單位:萬元)之間有下列對應(yīng)數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
40 | 60 | 50 | 70 |
工作人員不慎將表格中的第一個數(shù)據(jù)丟失.已知對呈線性相關(guān)關(guān)系,且回歸方程為,則下列說法:①銷售額與廣告費支出正相關(guān);②丟失的數(shù)據(jù)(表中處)為30;③該公司廣告費支出每增加1萬元,銷售額一定增加萬元;④若該公司下月廣告投入8萬元,則銷售
額為70萬元.其中,正確說法有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為F,過F作平行于x軸的直線交拋物線于A,B兩點(A在B的左側(cè)),若△AOB的面積為2.
(1)求拋物線C的方程;
(2)設(shè)P是拋物線C的準(zhǔn)線上一點,Q是拋物線上的一點,若PF⊥QF,求證:直線PQ與拋物線相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,角A,B,C 所對的邊分別為a,b,c,已知bsinA= acosB.
(1)求角B 的值;
(2)若cosAsinC= ,求角A的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知曲線C1:y=(x>0)及曲線C2:y= (x>0).C1上的點Pn的橫坐標(biāo)為an,過C1上的點Pn(n∈N+)作直線平行于x軸,交曲線C2于點Qn,再過點Qn作直線平行于y軸,交曲線C1于點Pn+1.
試求an+1與an之間的關(guān)系,并證明a2n-1<<a2n(n∈N+).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD中點,PA⊥底面ABCD,PA=2.
(1)證明:平面PBE⊥平面PAB;
(2)求直線PC與平面PBE所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在區(qū)間上的最大、最小值;
(2)求證:在區(qū)間上,函數(shù)的圖象在函數(shù)的圖象的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知恒等式(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n .
(1)求a1+a2+a3+…+a2n和a2+2a3+22a4+…+22n﹣2a2n的值;
(2)當(dāng)n≥6時,求證: a2+2A a3+…+22n﹣2 a2n<49n﹣2 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com