【題目】已知,則_____.
【答案】
【解析】
分子分母同時除以,把目標式轉(zhuǎn)為的表達式,代入可求.
,則
故答案為:.
【點睛】
本題考查三角函數(shù)的化簡求值,常用方法:(1)弦切互化法:主要利用公式, 形如等類型可進行弦化切;(2)“1”的靈活代換和的關(guān)系進行變形、轉(zhuǎn)化.
【題型】填空題
【結(jié)束】
15
【題目】如圖,正方體的棱長為1,為中點,連接,則異面直線和所成角的余弦值為_____.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,從A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)這6個點中隨機選取3個點,將這3個點及原點O兩兩相連構(gòu)成一個“立體”,記該“立體”的體積為隨機變量V(如果選取的3個點與原點在同一個平面內(nèi),此時“立體”的體積V=0).
(1)求V=0的概率;
(2)求V的分布列及數(shù)學期望EV.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列推理過程不是演繹推理的是( )
①一切奇數(shù)都不能被2整除,2019是奇數(shù),2019不能被2整除;
②由“正方形面積為邊長的平方”得到結(jié)論:正方體的體積為棱長的立方;
③在數(shù)列中,,由此歸納出的通項公式;
④由“三角形內(nèi)角和為”得到結(jié)論:直角三角形內(nèi)角和為.
A. ①② B. ③④ C. ②③ D. ②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點.
(1)證明:CD⊥平面PAE;
(2)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P﹣ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xoy中,曲線C1上的點均在C2:(x﹣5)2+y2=9外,且對C1上任意一點M,M到直線x=﹣2的距離等于該點與圓C2上點的距離的最小值.
(1)求曲線C1的方程
(2)設(shè)P(x0 , y0)(y0≠±3)為圓C2外一點,過P作圓C2的兩條切線,分別于曲線C1相交于點A,B和C,D.證明:當P在直線x=﹣4上運動時,四點A,B,C,D的縱坐標之積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),設(shè)函數(shù)f(x)= +λ(x∈R)的圖象關(guān)于直線x=π對稱,其中ω,λ為常數(shù),且ω∈( ,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點( ,0)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù), 為正實數(shù).
(1)當時,求曲線在點處的切線方程;
(2)求證: ;
(3)若函數(shù)有且只有個零點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在( ﹣ )n的展開式中,第6項為常數(shù)項.
(1)求n;
(2)求含x2項的系數(shù);
(3)求展開式中所有的有理項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P(﹣1,4)及圓C:(x﹣2)2+(y﹣3)2=1.則下列判斷正確的序號為 .
①點P在圓C內(nèi)部;
②過點P做直線l,若l將圓C平分,則l的方程為x+3y﹣11=0;
③過點P做直線l與圓C相切,則l的方程為y﹣4=0或3x+4y﹣13=0;
④一束光線從點P出發(fā),經(jīng)x軸反射到圓C上的最短路程為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com