分析 (1)利用數(shù)量積運(yùn)算性質(zhì)、倍角公式、和差公式可得f(x)=$sin(2x-\frac{π}{6})$,由于x∈[0,$\frac{π}{4}$],f(x)=$\frac{\sqrt{3}}{3}$=$\frac{\sqrt{3}}{2}sin2x$-$\frac{1}{2}cos2x$,又sin22x+cos22x=1,即可解得cos2x.
(2)2bcosA≤2c-$\sqrt{3}$a,利用余弦定理化為a2+c2-b2$≥\sqrt{3}$ac,再利用余弦定理可得cosB$≥\frac{\sqrt{3}}{2}$,即可得出.
解答 解:(1)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+$\frac{1}{2}$=$\sqrt{3}sinxcosx$-cos2x$+\frac{1}{2}$=$\frac{\sqrt{3}}{2}sin2x$-$\frac{1}{2}cos2x$=$sin(2x-\frac{π}{6})$,
∴x∈[0,$\frac{π}{4}$],f(x)=$\frac{\sqrt{3}}{3}$=$\frac{\sqrt{3}}{2}sin2x$-$\frac{1}{2}cos2x$,又sin22x+cos22x=1,
解得cos2x=$\frac{3\sqrt{2}-\sqrt{3}}{6}$.
(2)∵cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$,2bcosA≤2c-$\sqrt{3}$a,
∴$\frac{^{2}+{c}^{2}-{a}^{2}}{c}$≤2c-$\sqrt{3}$a,化為a2+c2-b2$≥\sqrt{3}$ac,
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$$≥\frac{\sqrt{3}}{2}$,
∴$0<B≤\frac{π}{6}$.
f(B)=sin$(2B-\frac{π}{6})$,$(2B-\frac{π}{6})$∈$(-\frac{π}{6},\frac{π}{6}]$,
∴f(B)∈$(-\frac{1}{2},\frac{1}{2}]$.
點(diǎn)評(píng) 本題考查了數(shù)量積運(yùn)算性質(zhì)、倍角公式、和差公式、余弦定理、三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com