【題目】已知函數(shù)f(x)=(log2x﹣2)(log4x﹣
(1)當(dāng)x∈[2,4]時(shí),求該函數(shù)的值域;
(2)若f(x)>mlog2x對(duì)于x∈[4,16]恒成立,求m的取值范圍.

【答案】
(1)解:f(x)=(log2x﹣2)(log4x﹣

= (log2x)2 log2x+1,2≤x≤4

令t=log2x,則y= t2 t+1= (t﹣ )2﹣ ,

∵2≤x≤4,

∴1≤t≤2.

當(dāng)t= 時(shí),ymin=﹣ ,當(dāng)t=1,或t=2時(shí),ymax=0.

∴函數(shù)的值域是[﹣ ,0]


(2)解:令t=log2x,得 t2 t+1>mt對(duì)于2≤t≤4恒成立.

∴m< t+ 對(duì)于t∈[2,4]恒成立,

設(shè)g(t)= t+ ,t∈[2,4],

∴g(t)= t+ = (t+ )﹣

∵g(t)= t+ 在[2,4]上為增函數(shù),

∴當(dāng)t=2時(shí),g(t)min=g(2)=0,

∴m<0.


【解析】(1)f(x)=(log2x﹣2)(log4x﹣ )= (log2x)2﹣ log2x+1,2≤x≤4,令t=log2x,則y= t2﹣ t+1= (t﹣ 2 ,由此能求出函數(shù)的值域.(2)令t=log2x,得 t2 t+1>mt對(duì)于2≤t≤4恒成立,從而得到m< t+ 對(duì)于t∈[2,4]恒成立,構(gòu)造函數(shù)g(t)= t+ ,t∈[2,4],能求出m的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象在點(diǎn)處的切線方程為

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)求函數(shù)在區(qū)間上的最大值;

(Ⅲ)曲線上存在兩點(diǎn),使得是以坐標(biāo)原點(diǎn)為直角頂點(diǎn)的直角三角形,且斜邊的中點(diǎn)在軸上,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率 ,左右焦點(diǎn)分別為 是橢圓在第一象限上的一個(gè)動(dòng)點(diǎn),圓 的延長(zhǎng)線, 的延長(zhǎng)線以及線段 都相切, 為一個(gè)切點(diǎn).

(1)求橢圓方程;

(2)設(shè) ,過(guò) 且不垂直于坐標(biāo)軸的動(dòng)點(diǎn)直線 交橢圓于 兩點(diǎn),若以 為鄰邊的平行四邊形是菱形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,圓的參數(shù)方程為為參數(shù)),(1)直線過(guò)且與圓相切,求直線的極坐標(biāo)方程;(2)過(guò)點(diǎn)且斜率為的直線與圓交于, 兩點(diǎn),若,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x2+ax﹣6a2≤0},B={x||x﹣2|<a},
(1)當(dāng)a=1時(shí),求A∩B和A∪B;
(2)當(dāng)BA時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=﹣ 時(shí),方程f(1﹣x)= 有實(shí)根,求實(shí)數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+alnx.
(1)當(dāng)a=1時(shí),求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)a=﹣2時(shí),求函數(shù)f(x)的極值;
(3)若函數(shù)g(x)=f(x)+ 在[1,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】右面莖葉圖表示的是甲、乙兩人在5次綜合測(cè)評(píng)中的成績(jī),其中一個(gè)數(shù)字被污損.則甲的平均成績(jī)超過(guò)乙的平均成績(jī)的概率為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:參數(shù)方程與極坐標(biāo)系

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù), 為傾斜角),以坐標(biāo)原點(diǎn)O為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為

1)求曲線的直角坐標(biāo)方程,并 C的焦點(diǎn)F的直角坐標(biāo);

2)已知點(diǎn),若直線C相交于A,B兩點(diǎn),且,求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案