如圖,已知在60º的二面角的棱上有兩點A、B,線段AC、BD分別在這個二面角的兩個面內(nèi),并且都垂直于棱AB,AB=4,AC=6,BD=8,則CD等于

A.                   B.             C.                   D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知四棱錐P-ABCD的底面的菱形,∠BCD=60°,點E是BC邊的中點,AC與DE交于點O,PO⊥平面ABCD,
(1)求證:PD⊥BC;
(2)若AB=6
3
,PC=6
2
,求二面角P-AD-C的大。
(3)在(2)的條件下,求異面直線PB與DE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知平行六面體ABCD-A1B1C1D1的底面為正方形,O1,O分別為上、下底面的中心,且A1在底面ABCD上的射影是O.
(1)求證:面O1DC⊥面ABCD;
(2)若∠A1AB=60°,求二面角C-AA1-B大;
(3)若點E,F(xiàn)分別在棱AA1,BC上,且AE=2EA1,問點F在何處時,EF⊥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知四棱錐P-ABCD的底面積是菱形,AC交BD于O,PO⊥平面ABC,E為AD中點,F(xiàn)在PA上,
AP=λAF,PC∥平面BEF.
(1)求λ的值;
(2)若2,∠ADB=∠BPC=60°,求二面角B-AF-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

如圖,已知過原點Ox軸正方向出發(fā)順時針轉(zhuǎn)60°得到射線t,點Axy)在射線tx0,y0,設(shè)|OA|m;又點B,)在射線y00)上移動;設(shè)點P為第四象限的動點,若·0,且·,·,成等差數(shù)列.

(Ⅰ)求動點P的軌跡方程,并說明軌跡C的形狀;

(Ⅱ)已知動直線l與曲線C有三個不同的交點M、N,且v,v=(21),設(shè) Q,)為線段MN的中點,求的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

如圖,已知過原點Ox軸正方向出發(fā)順時針轉(zhuǎn)60°得到射線t,點Ax,y)在射線tx0y0,設(shè)|OA|m;又點B,)在射線y00)上移動;設(shè)點P為第四象限的動點,若·0,且·,·,成等差數(shù)列.

(Ⅰ)求動點P的軌跡方程,并說明軌跡C的形狀;

(Ⅱ)已知動直線l與曲線C有三個不同的交點MN,且v,v=(2,1),設(shè) Q,)為線段MN的中點,求的取值范圍

 

查看答案和解析>>

同步練習(xí)冊答案