已知曲線C:f(x)=x2,C上的點A0,An的橫坐標分別為1和an(n∈N*),且a1=5,數(shù)列{xn}滿足xn+1=t•f(xn-1)+1(t>0且t≠
1
2
,t≠1)
,設(shè)區(qū)間Dn=[1,an](an>1),當x∈Dn時,曲線C上存在點Pn(xn,f(xn)),使得點Pn處的切線與直線A0An平行.
(1)證明:{logt(xn-1)+1}是等比數(shù)列;
(2)當Dn+1?Dn對一切n∈N*恒成立時,求t的取值范圍;
(3)記數(shù)列{an}的前n項和為Sn,當t=
1
4
時,試比較Sn與n+7的大小,并證明你的結(jié)論.
(1)∵由線在點Pn的切線與直線AAn平行,
2xn=
an2-1
an-1
,即xn=
an+1
2
,
由xn+1=tf(xn+1-1)+1,得xn+1-1=t(xn-1)2,
∴l(xiāng)ogt(xn+1-1)=1+2logt(xn-1),
即logt(xn+1-1)+1=2[logt(xn-1)+1],
∴{logt(xn-1)+1}是首項為logt2+1,公比為2的等比數(shù)列.
(2)由(1)得logt(xn-1)+1=(logt2+1)•2n-1,
xn=1+
1
t
(2t)2n-1

從而an=2xn-1=1+
2
t
(2t)2n-1
,
由Dn+1?Dn對一切n∈N*恒成立,
得an+1<an,
(2t)2n(2t)2n-1
∴0<2t<1,
0<t<
1
2

(3)當t=
1
4
時,an=1+8×(
1
2
)
2n-1
,
Sn=n+8[
1
2
+(
1
2
)
2
+(
1
2
)
4
+…+(
1
2
)
2n-1
]

當n≤3時,2n-1≤n+1;
當n≥4時,2n-1>n+1,
∴當n≤3時,Sn≤n+8[
1
2
+(
1
2
)
2
+(
1
2
)
4
]=n+
13
2
<n+7.
當n≥4時,Snn+8[
1
2
+(
1
2
)
2
+(
1
2
)
3
+(
1
2
)
4
+…+
(
1
2
)
n+1
]

=n+7-(
1
2
)
n-2

<n+7.
綜上所述,對任意的n∈N*,都有Sn<n+7.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知曲線C:f(x)=3x2-1,C上的兩點A,An的橫坐標分別為2與an(n=1,2,3,…),a1=4,數(shù)列{xn}滿足xn+1=
t
3
[f(xn-1)+1]+1
(t>0且t≠
1
2
,t≠1)
、設(shè)區(qū)間Dn=[1,an](an>1),當x∈Dn時,曲線C上存在點pn(xn,f(xn)),使得點pn處的切線與AAn平行,
(I)建立xn與an的關(guān)系式;
(II)證明:{logt(xn-1)+1}是等比數(shù)列;
(III)當Dn+1?Dn對一切n∈N+恒成立時,求t的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C:f(x)=x3+1,則與直線y=-
1
3
x-4
垂直的曲線C的切線方程為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C:f(x)=x+
ax
(a>0),直線l:y=x,在曲線C上有一個動點P,過點P分別作直線l和y軸的垂線,垂足分別為A,B.再過點P作曲線C的切線,分別與直線l和y軸相交于點M,N,O是坐標原點.則△OMN與△ABP的面積之比為
8
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•溫州二模)已知曲線C:f(x)=x3-ax+a,
(Ⅰ)若f(x)在區(qū)間[1,2]上是增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)過C外一點A(1,0)引C的兩條切線,若它們的傾斜角互補,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C:f(x)=x3
(1)利用導(dǎo)數(shù)的定義求f(x)的導(dǎo)函數(shù)f′(x);
(2)求曲線C上橫坐標為1的點處的切線方程.

查看答案和解析>>

同步練習冊答案