若拋物線y2=2px(p>0)上的橫坐標(biāo)為6的點(diǎn)到焦點(diǎn)的距離為10,則焦點(diǎn)到準(zhǔn)線的距離為( 。
A、4B、8C、16D、32
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)拋物線的定義可知該點(diǎn)到準(zhǔn)線的距離為10,進(jìn)而利用拋物線方程求得其準(zhǔn)線方程,利用點(diǎn)到直線的距離求得p,即為焦點(diǎn)到準(zhǔn)線的距離.
解答: 解:∵橫坐標(biāo)為6的點(diǎn)到焦點(diǎn)的距離是10,
∴該點(diǎn)到準(zhǔn)線的距離為10,
拋物線的準(zhǔn)線方程為x=-
p
2
,
∴6+
p
2
=10,求得p=8
故選B.
點(diǎn)評(píng):本題主要考查了拋物線的定義和性質(zhì).考查了考生對(duì)拋物線定義的掌握和靈活應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若sin(
π
2
+x)+sin(π+x)=
1
3
,則sinx•cosx的值為( 。
A、
4
9
B、-
4
9
C、-
8
9
D、
8
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在拋物線y=4x2上點(diǎn)P(
 
)到直線y=4x-5的距離最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,以F1為頂點(diǎn),F(xiàn)2為焦點(diǎn)的拋物線經(jīng)過橢圓短軸的兩端點(diǎn),則橢圓的離心率為(  )
A、
1
2
B、
2
2
C、
1
3
D、
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由曲線y2=2x與直線y=-x+4所圍成的封閉圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正三棱錐底面邊長(zhǎng)為4,體積為1,則側(cè)面與底面所成二面角的正切值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式:
(1)|
1
2
x+1|≥2;
(2)|8-x|≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次項(xiàng)系數(shù)為正的二次函數(shù)f(x)對(duì)任意x∈R,都有f(1-x)=f(1+x)成立,設(shè)向量
a
=(sinx,2),
b
=(2sinx,
1
2
),
c
=(cos2x,1),
d
=(1,2),當(dāng)x∈[0,π]時(shí),求不等式f(
a
b
)>f(
c
d
)
的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x3-3x2+2x,直線l:y=kx,且l與C切于點(diǎn)(x0,y0)(x0≠0),則切點(diǎn)坐標(biāo)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案