【題目】在三棱柱中, 平面, , , ,點在棱上,且.建立如圖所示的空間直角坐標(biāo)系.
(1)當(dāng)時,求異面直線與的夾角的余弦值;
(2)若二面角的平面角為,求的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)的極值;
(2)當(dāng)時,若存在實數(shù), 使得不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=x+b與橢圓 +y2=1相交于A,B兩個不同的點.
(1)求實數(shù)b的取值范圍;
(2)已知弦AB的中點P的橫坐標(biāo)是- ,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)為奇函數(shù),且在(﹣∞,0)內(nèi)是減函數(shù),f(2)=0,則 <0的解集為( )
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,2)∪(0,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0)∪(0,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為1的菱形,∠BAD=60°,側(cè)棱PA⊥底面ABCD,E、F分別是PA、PC的中點.
(Ⅰ)證明:PA∥平面FBD;
(Ⅱ)若PA=1,在棱PC上是否存在一點M使得二面角E﹣BD﹣M的大小為60°.若存在,求出PM的長,不存在請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項等比數(shù)列{an}滿足:a7=a6+2a5 , 若存在兩項am , an , 使得aman=16a12 , 則 + 的最小值為( )
A.
B.
C.
D.不存在
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= + 的定義域為( )
A.{x|x≥﹣3且x≠﹣2}
B.{x|x≥﹣3且x≠2}
C.{x|x≥﹣3}
D.{x|x≥﹣2且x≠3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x+1)=﹣f(x),且當(dāng)x∈[﹣1,0)時f(x)=( )x , 則 f(log28)等于( )
A.3
B.
C.﹣2
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com