如圖,橢圓的離心率為,直線所圍成的矩形ABCD的面積為8.

(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;

(Ⅱ) 設(shè)直線與橢圓M有兩個(gè)不同的交點(diǎn)與矩形ABCD有兩個(gè)不同的交點(diǎn).求的最大值及取得最大值時(shí)m的值.

 

【答案】

(I)     (II) 和0時(shí),取得最大值

【解析】(I)……①

矩形ABCD面積為8,即……②

由①②解得:,∴橢圓M的標(biāo)準(zhǔn)方程是.

(II),

設(shè),則,

.

.

當(dāng)點(diǎn)時(shí),,當(dāng)點(diǎn)時(shí),.

①當(dāng)時(shí),有,[來源:]

,

其中,由此知當(dāng),即時(shí),取得最大值.

②由對(duì)稱性,可知若,則當(dāng)時(shí),取得最大值.

③當(dāng)時(shí),,

由此知,當(dāng)時(shí),取得最大值.

綜上可知,當(dāng)和0時(shí),取得最大值

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省高三下學(xué)期開學(xué)考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,橢圓的離心率為,軸被曲線截得的線段長(zhǎng)等于的短軸長(zhǎng)。軸的交點(diǎn)為,過坐標(biāo)原點(diǎn)的直線相交于點(diǎn),直線分別與相交于點(diǎn)。

1)求、的方程;

2)求證:。

3)記的面積分別為,若,求的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省桐鄉(xiāng)市高三模擬考試(2月)理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,橢圓的離心率為是其左右頂點(diǎn),是橢圓上位于軸兩側(cè)的點(diǎn)(點(diǎn)軸上方),且四邊形面積的最大值為4.

(1)求橢圓方程;

(2)設(shè)直線的斜率分別為,若,設(shè)△與△的面積分別為,求的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省萊蕪市高三4月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,橢圓的離心率為,軸被曲線截得的線段長(zhǎng)等于的短軸長(zhǎng)。軸的交點(diǎn)為,過坐標(biāo)原點(diǎn)的直線相交于點(diǎn),直線分別與相交于點(diǎn)

(1)求、的方程;

(2)求證:

(3)記的面積分別為,若,求的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆重慶市高二上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)如圖,橢圓的離心率為,直線所圍成的矩形ABCD的面積為8.

 

(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;

(Ⅱ) 設(shè)直線與橢圓M有兩個(gè)不同的交點(diǎn)與矩形ABCD有兩個(gè)不同的交點(diǎn).求的最大值及取得最大值時(shí)m的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案