(本小題滿分12分,(Ⅰ)問5分,(Ⅱ)問7分)
已知以原點為中心的橢圓的一條準(zhǔn)線方程為,離心率是橢圓上的動點。
(Ⅰ)若的坐標(biāo)分別是,求的最大值;
(Ⅱ)如題(20)圖,點的坐標(biāo)為,是圓上的點,是點軸上的射影,點滿足條件:,,求線段的中點的軌跡方程。
(Ⅰ)4
(Ⅱ)
(Ⅰ)由題設(shè)條件知焦點在y軸上,故設(shè)橢圓方程為ab> 0 )。
設(shè),由準(zhǔn)線方程得,由,解得a =" 2" ,c = ,從而 b = 1,橢圓方程為。
又易知C,D兩點是橢圓的焦點,所以,。
從而,當(dāng)且僅當(dāng),即點M的坐標(biāo)為 時上式取等號,的最大值為4。
(II)如答(20)圖,設(shè),。

因為,故

     ①
因為

所以  .    ②
P點的坐標(biāo)為,因為PBQ的中點
所以    
由因為 ,結(jié)合①,②得




故動點P的估計方程為
。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若給定橢圓C:ax2+by2=1(a>0,b>0,ab)和點N(x0,y0),則稱直線l:ax0x+by0y=1為橢圓C的“伴隨直線”,
(1)若N(x0,y0)在橢圓C上,判斷橢圓C與它的“伴隨直線”的位置關(guān)系(當(dāng)直線與橢圓的交點個數(shù)為0個、1個、2個時,分別稱直線與橢圓相離、相切、相交),并說明理由;
(2)命題:“若點N(x0,y0)在橢圓C的外部,則直線l與橢圓C必相交.”寫出這個命題的逆命題,判斷此逆命題的真假,說明理由;
(3)若N(x0,y0)在橢圓C的內(nèi)部,過N點任意作一條直線,交橢圓C于A、B,交l于M點(異于A、B),設(shè),,問是否為定值?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓上一點P到右焦點的距離是長軸兩端點到右焦點距離的等差中項,則P點的坐標(biāo)為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)、分別是橢圓的左、右焦點.
(Ⅰ)若P是該橢圓上的一個動點,求的最大值和最小值;
(Ⅱ)是否存在過點A(5,0)的直線l與橢圓交于不同的兩點C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖,過橢圓的左焦點x軸的垂線交橢圓于點P,點A和點B分別為橢圓的右頂點和上頂點,OPAB
(1)求橢圓的離心率e(2)過右焦點作一條弦QR,使QRAB.若△的面積為,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)向量a=(x+1,y),b=(x-1,y),點P(x,y)為動點,已知|a|+|b|=4.
(Ⅰ)求點P的軌跡方程;
(Ⅱ)設(shè)點P的軌跡與x軸負(fù)半軸交于點A,過點F(1,0)的直線交點P的軌跡于B、C兩點,試推斷△ABC的面積是否存在最大值?若存在,求其最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的離心率為=,點是橢圓上的一點,且點到橢圓兩焦點的距離之和為4.
(1)求橢圓的方程;
(2)橢圓上一動點關(guān)于直線的對稱點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓被直線截得的弦長為                   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在x軸上,一個頂點A(0,-1),且右焦點到右準(zhǔn)線的距離為.
(1)求橢圓的方程.
(2)試問是否能找到一條斜率為k(k≠0)的直線l,使l與橢圓交于不同兩點M、N且滿足|AM|=|AN|?若這樣的直線存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案