5.(1)直線l與x軸交于(2,0),與y軸交于(0,3),求直線l的方程;
(2)將(1)所求的直線l,繞點(0,3)逆時針旋轉(zhuǎn)90°,得新直線l1,求直線l1的方向向量與法向量.

分析 (1)利用截距式可得直線l的方程;
(2)由(1)斜率k=-$\frac{3}{2}$,直線l1的斜率k′=$\frac{2}{3}$,即可求直線l1的方向向量與法向量.

解答 解:(1)∵直線l與x軸交于(2,0),與y軸交于(0,3),
∴直線l的方程為$\frac{x}{2}+\frac{y}{3}=1$;
(2)由(1)斜率k=-$\frac{3}{2}$,∴直線l1的斜率k′=$\frac{2}{3}$,
∴直線l1的方向向量為(3,2),法向量為(2,-3).

點評 本題考查待定系數(shù)法求直線方程,考查直線l1的方向向量與法向量,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}滿足a1=3,an+1=an+p•3n(n∈N*,p為常數(shù)),a1,a2+6,a3成等差數(shù)列,則數(shù)列{an}的通項公式為${a}_{n}={3}^{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.i是虛數(shù)單位,($\frac{\sqrt{2}}{1-i}$)2014+($\frac{1+i}{1-i}$)6=$\frac{1}{{2}^{1007}}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在三角形ABC中,角A,B,C的對邊分別為a,b,c,已知a=1,A=$\frac{π}{4}$,bsin($\frac{π}{4}$+C)=csin($\frac{π}{4}$+B)+1
(Ⅰ)求B,C的值
(Ⅱ)求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,g(x)=4[f(x)]2-4a•f(x)+2a2-2(a≥0)
(1)證明函數(shù)f(x)在(-∞,0]上單調(diào)遞減,在[0,+∞)上單調(diào)遞增;
(2)分別求函數(shù)f(x)和g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.y=$\sqrt{x-2}$-x(x≥3)的值域為(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知P(x,y)為區(qū)域$\left\{\begin{array}{l}{{y}^{2}-{x}^{2}≤0}\\{0≤x≤2}\end{array}\right.$內(nèi)的任意一點,z=2x-y的最大值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,AC=3,AB=4,BC=5,P為角平分線AT上一點,且在△ABC內(nèi)部,則P到三邊距離倒數(shù)之和的最小值為$\frac{19+2\sqrt{70}}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求下列各式的值:
(1)($\root{3}{2}×\sqrt{3}$)6+($\sqrt{2\sqrt{2}}$)${\;}^{\frac{4}{3}}$-4×($\frac{16}{49}$)${\;}^{-\frac{1}{2}}$-$\root{4}{2}$×80.25+(-2015)0
(2)$\frac{1}{2}$lg$\frac{32}{49}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{245}$+(lg2)•lg50+lg25.

查看答案和解析>>

同步練習(xí)冊答案