已知拋物線的焦點(diǎn)為F,過點(diǎn)A(4,4)作直線l:x=-1垂線,垂足為M,則∠MAF的平分線所在直線的方程為   
【答案】分析:拋物線的焦點(diǎn)為F(1,0),準(zhǔn)線方程為l:x=-1,由題設(shè)條件能推導(dǎo)出M點(diǎn)坐標(biāo)為(-1,4),|AF|=|AM|,從而得到∠MAF的平分線所在的直線就是線段MF的垂直平分線,由此能求出結(jié)果.
解答:解:拋物線的焦點(diǎn)為F(1,0),準(zhǔn)線方程為l:x=-1,
點(diǎn)A(4,4),由拋物線的定義知|AF|=|AM|,
∴∠MAF的平分線所在的直線就是線段MF的垂直平分線,
∵過點(diǎn)A(4,4)作直線l:x=-1垂線,垂足為M,
∴M點(diǎn)坐標(biāo)為(-1,4),
kAF==-2,
∴∠MAF的平分線的方程為y-4=,即x-2y+4=0.
故答案為:x-2y+4=0.
點(diǎn)評:本題考查直線方程的求法,解題時要認(rèn)真審題,仔細(xì)解答,注意拋物線的簡單性質(zhì)、斜率計(jì)算公式、點(diǎn)斜式方程等知識點(diǎn)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省高三上學(xué)期第三次統(tǒng)練文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知拋物線的焦點(diǎn)為F,過F的直線交拋物線于M、N兩點(diǎn),其準(zhǔn)線與x軸交于K點(diǎn).

(1)求證:KF平分∠MKN;

(2)O為坐標(biāo)原點(diǎn),直線MO、NO分別交準(zhǔn)線于點(diǎn)P、Q,求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧沈陽二中等重點(diǎn)中學(xué)協(xié)作體高三領(lǐng)航高考預(yù)測(二)理數(shù)學(xué)卷(解析版) 題型:填空題

已知拋物線的焦點(diǎn)為F,過拋物線在第一象限部分上一點(diǎn)P的切線為,過P點(diǎn)作平行于軸的直線,過焦點(diǎn)F作平行于的直線交于M,若,則點(diǎn)P的坐標(biāo)為         。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆河北省唐山市高三年級第一學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)已知拋物線的焦點(diǎn)為F,過點(diǎn)F作直線與拋物線交于A,B兩點(diǎn),拋物線的準(zhǔn)線與軸交于點(diǎn)C。

(1)證明:;

(2)求的最大值,并求取得最大值時線段AB的長。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試(全國Ⅰ)理科數(shù)學(xué)全解全析 題型:解答題

(本小題滿分12分)(注意:在試題卷上作答無效)

已知拋物線的焦點(diǎn)為F,過點(diǎn)的直線相交于、兩點(diǎn),點(diǎn)A關(guān)于軸的對稱點(diǎn)為D .

(Ⅰ)證明:點(diǎn)F在直線BD上;

(Ⅱ)設(shè),求的內(nèi)切圓M的方程 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年黑龍江省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:選擇題

已知拋物線的焦點(diǎn)為F,準(zhǔn)線為,經(jīng)過F且斜率為的直線與拋物線在軸上方的部分相交于點(diǎn)A,且AK,垂足為K,則的面積是(  )

A 4     B        C       D 8

 

查看答案和解析>>

同步練習(xí)冊答案