5.給出下列四種說法:
①-2i是虛數(shù),但不是純虛數(shù);
②兩個(gè)復(fù)數(shù)互為共軛復(fù)數(shù),當(dāng)且僅當(dāng)其和為實(shí)數(shù);
③已知x,y∈R,則x+yi=1+i的充要條件為x=y=1;
④如果讓實(shí)數(shù)a與ai對(duì)應(yīng),那么實(shí)數(shù)集與純虛數(shù)集一一對(duì)應(yīng).
其中正確說法的為③.

分析 由條件利用復(fù)數(shù)的有關(guān)定義和性質(zhì),對(duì)各個(gè)選項(xiàng)進(jìn)行判斷,從而得出結(jié)論.

解答 解:由于-2i是虛數(shù),且也是純虛數(shù),故①錯(cuò)誤;
由于兩個(gè)復(fù)數(shù)互為共軛復(fù)數(shù),則這兩個(gè)復(fù)數(shù)一個(gè)為a+bi,另一個(gè)為 a-bi,a、b∈R,i為虛數(shù)單位,
故兩個(gè)復(fù)數(shù)的和為實(shí)數(shù)時(shí),這兩個(gè)復(fù)數(shù)不一定是共軛復(fù)數(shù),如1-i 和3+i,這兩個(gè)復(fù)數(shù)的和為實(shí)數(shù),但這兩個(gè)復(fù)數(shù)不是共軛復(fù)數(shù),故②錯(cuò)誤;
③已知x,y∈R,則x+yi=1+i的充要條件為x=y=1,正確;
④如果讓實(shí)數(shù)a與ai對(duì)應(yīng),那么實(shí)數(shù)集與純虛數(shù)集不是一一對(duì)應(yīng)的,如當(dāng)a=0時(shí),故④錯(cuò)誤,
故答案為:③.

點(diǎn)評(píng) 本題主要考查復(fù)數(shù)的有關(guān)定義和性質(zhì),命題真假的判斷,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè){an}為等比數(shù)列,a1=1,a2=3.
(Ⅰ)求最小的自然數(shù)n,使an≥2014;
(Ⅱ)求和:${T_{2n}}=\frac{1}{a_1}-\frac{2}{a_2}+\frac{3}{a_3}-…-\frac{2n}{{{a_{2n}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列函數(shù)中,值域?yàn)閇-2,2]的是(  )
A.f(x)=2x-1B.f(x)=log0.5(x+11)C.f(x)=$\frac{4x}{{x}^{2}+1}$D.f(x)=x2(4-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知定義在R上的奇函數(shù)f(x)=$\frac{ax+b}{{x}^{2}+c}$的圖象如圖所示,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.c>a>bC.b>a>cD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在大橋上有12個(gè)固定的哨位,但平時(shí)只派9人執(zhí)勤,規(guī)定兩端的哨位必須有人執(zhí)勤,也不能讓相鄰哨位都空崗,則不同的排崗方法有( 。
A.$C_8^3$種B.$A_8^3$種C.$C_8^3A_9^9$種D.$A_9^3$種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)隨機(jī)變量X的概率分布如右下,則P(X≥0)=(  )
X-101
P$\frac{1}{2}$$\frac{1}{3}$p
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某高校在上學(xué)期依次舉行了“法律、環(huán)保、交通”三次知識(shí)競(jìng)賽活動(dòng),要求每位同學(xué)至少參加一次活動(dòng).該高校2014級(jí)某班50名學(xué)生在上學(xué)期參加該項(xiàng)活動(dòng)的次數(shù)統(tǒng)計(jì)如圖所示.
(1)從該班中任意選兩名學(xué)生,求他們參加活動(dòng)次數(shù)不相等的概率.
(2)從該班中任意選兩名學(xué)生,用ξ表示這兩人參加活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ.
(3)從該班中任意選兩名學(xué)生,用η表示這兩人參加活動(dòng)次數(shù)之和,記“函數(shù)f(x)=x2-ηx-1在區(qū)間(3,5)上有且只有一個(gè)零點(diǎn)”為事件A,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=x2+2x+1-sin$\frac{a-b}{3}$π
(Ⅰ)若a是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求函數(shù)f(x)有零點(diǎn)的概率
(Ⅱ)若a是從區(qū)間[0,3]中任取的一個(gè)數(shù),b是從區(qū)間[0,2]中任取的一個(gè)數(shù),求函數(shù)f(x)有零點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.對(duì)于數(shù)列{an},定義數(shù)列{△an}滿足:△an=an+1-an,(n∈N*),定義數(shù)列{△2an}滿足:△2an=△an+1-△an,(n∈N*),若數(shù)列{△2an}中各項(xiàng)均為1,且a21=a2012=0,則a1=20110..

查看答案和解析>>

同步練習(xí)冊(cè)答案