已知雙曲線的中心在原點(diǎn)O,其中一條準(zhǔn)線方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點(diǎn).
(1)求此雙曲線的標(biāo)準(zhǔn)方程;
(2)(普通中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),試問(wèn):是否存在實(shí)數(shù)k,使得以弦AB為直徑的圓過(guò)點(diǎn)O?若存在,求出k的值,若不存在,請(qǐng)說(shuō)明理由.
(重點(diǎn)中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),C是直線L1:y=mx+6上任一點(diǎn)(A、B、C三點(diǎn)不共線)試問(wèn):是否存在實(shí)數(shù)k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請(qǐng)說(shuō)明理由.
(1)由已知得:c2=12,
a2
c
=
3
2
,則a2=3,b2=9,
因此所求雙曲線的標(biāo)準(zhǔn)方程為
x2
3
-
y2
9
=1
.---(4分)
(2)(普通中學(xué)學(xué)生做)
將y=kx+3代入
x2
3
-
y2
9
=1
得(3-k2)x2-6kx-18=0,
則由3-k2≠0,△=216-36k2>0得:-
6
<k<
6
,k≠±
3
,---(7分)
設(shè)A(x1,y1),B(x2,y2),則x1,x2是上述方程的兩個(gè)根,
由題意知:OA⊥OB,則x1x2+y1y2=0,---(9分)
又y1=kx1+3,y2=kx2+3,
x1x2+y1y2=(1+k2)x1x2+3k(x1+x2)+9=
9k2-9
k2-3
=0
,即k=±1滿足條件.---(12分)
(重點(diǎn)中學(xué)學(xué)生做)
將y=kx+3代入
x2
3
-
y2
9
=1
得(3-k2)x2-6kx-18=0,
則由3-k2≠0,△=216-36k2>0得:-
6
<k<
6
,k≠±
3
,---(7分)
設(shè)A(x1,y1),B(x2,y2),則x1,x2是上述方程的兩個(gè)根,
由題意知:A、B兩點(diǎn)關(guān)于直線L1對(duì)稱,---(9分)
則AB的中點(diǎn)D的坐標(biāo)為(
3k
3-k2
9
3-k2
)
,
并滿足直線L1的方程y=-
1
k
x+6
,則k=±1滿足條件.---(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

直線l:y=ax+1與雙曲線3x2-y2=1有兩個(gè)不同的交點(diǎn),
(1)求a的取值范圍;
(2)設(shè)交點(diǎn)為A,B,是否存在直線l使以AB為直徑的圓恰過(guò)原點(diǎn),若存在就求出直線l的方程,若不存在則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)橢圓
x2
6
+
y2
5
=1
內(nèi)的一點(diǎn)P(2,-1)的弦,恰好被點(diǎn)P平分,則這條弦所在直線方程( 。
A.y=
5
3
x-
5
6
B.y=
5
3
x-
13
3
C.y=-
5
3
x+
5
6
D.y=
5
3
x+
11
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

y軸上兩定點(diǎn)B1(0,b)、B2(0,-b),x軸上兩動(dòng)點(diǎn)M,N.P為B1M與B2N的交點(diǎn),點(diǎn)M,N的橫坐標(biāo)分別為XM、XN,且始終滿足XMXN=a2(a>b>0且為常數(shù)),試求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)直角坐標(biāo)平面xOy中的拋物線y2=2px(p>0)的焦點(diǎn)F作一條傾斜角為
π
4
的直線與拋物線相交于A、B兩點(diǎn).
(1)求直線AB的方程;
(2)試用p表示A、B之間的距離;
(3)當(dāng)p=2時(shí),求∠AOB的余弦值.
參考公式:(xA2+yA2)(xB2+yB2)=xAxB[xAxB+2p(xA+xB)+4p2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓mx2+ny2=1與直線x+y=1交于M,N兩點(diǎn),MN的中點(diǎn)為P,且OP的斜率為
2
2
,則
m
n
的值為( 。
A.
2
2
B.
2
2
3
C.
9
2
2
D.
2
3
27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(B題)已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為2
3
,離心率為
3
3

(1)求橢圓C的方程;
(2)設(shè)點(diǎn)A(-1,1),過(guò)原點(diǎn)O的直線交橢圓于點(diǎn)B,C,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y2=-x與直線y=k(x+1)相交于A、B兩點(diǎn).
(1)求證:OA⊥OB;
(2)當(dāng)△OAB的面積等于
10
時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)

(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為
3
2
,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案