正方體ABCD-A1B1C1D1,棱長為4,點A1到截面AB1D1的距離為( 。
A、
16
3
B、
4
3
3
C、
3
4
D、
3
考點:點、線、面間的距離計算
專題:空間位置關(guān)系與距離
分析:以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出點A1到截面AB1D1的距離.
解答: 解:以D為原點,DA為x軸,DC為y軸,DD1為z軸,
建立空間直角坐標(biāo)系,
則A(4,0,0),B1(4,4,4),D1(0,0,4),A1(4,0,4),
AD1
=(-4,0,4),
AB1
=(0,4,4),
AA1
=(0,0,4),
設(shè)平面AB1D1的法向量
n
=(x,y,z),
n
AD1
=-4x+4z=0
n
AB1
=4y+4z=0
,
取x=1,得
n
=(1,-1,1),
∴點A1到截面AB1D1的距離:
d=
|
AA1
n
|
|
n
|
=
|0+0+4|
3
=
4
3
3

故選:B.
點評:本題考查點到平面的距離的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意向量法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式x(2-x)>0的解集是( 。
A、{x|0<x<2}
B、{x|-2<x<0}
C、{x|x<-2或x>0}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2=4與y軸的兩個交點分別為A,B,以A,B為焦點,坐標(biāo)軸為對稱軸的雙曲線與圓在y軸左方的交點分別為C,D,當(dāng)梯形ABCD 的周長最大時,求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2ax,g(x)=ax+2(a>0),對任意的x1∈[-1,2],總存在x0∈[-1,2],使g(x1)=f(x0),則實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,透明塑料制成的長方體容器ABCD-A′B′C′D′內(nèi)灌進(jìn)一些水,固定容器底面一邊BC于桌面上,再將容器傾斜.隨著傾斜度的不同,有下面五個命題:
(1)有水的部分始終呈棱柱形;
(2)沒有水的部分始終呈棱柱形;
(3)棱A′D′始終與水面所在平面平行;
(4)水面EFGH所在四邊形的面積為定值;
(5)當(dāng)容器傾斜如圖(3)所示時,BE•BF是定值;
其中所有正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線x2-y2=a(a≠0)的離心率是( 。
A、
2
B、
2
2
C、2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是橢圓
x2
5
+
y2
4
=1上的一點,且以點P及焦點F1,F(xiàn)2為頂點的三角形的面積等于1,則這樣的點P有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,試根據(jù)下列要求,把被遮擋的部分改為虛線.
(1)AB沒有被平面α遮擋;
(2)AB被平面α遮擋.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈R,x2≥0”的否定為(  )
A、?x∈R,x2<0
B、?x∈R,x2≥0
C、?x∈R,x2<0
D、?x∈R,x2≤0

查看答案和解析>>

同步練習(xí)冊答案