分析 通過Sn=$\frac{n+2}{3}$an與Sn-1=$\frac{n+1}{3}$an-1作差、整理可知$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n+1}{n-1}$,進(jìn)而可知$\frac{{a}_{n-1}}{{a}_{n-2}}$=$\frac{n}{n-2}$、$\frac{{a}_{n-2}}{{a}_{n-3}}=\frac{n-1}{n-3}$、…、$\frac{{a}_{2}}{{a}_{1}}=\frac{3}{1}$,利用累乘法計算即得結(jié)論.
解答 解:∵Sn=$\frac{n+2}{3}$an,
∴當(dāng)n≥2時,Sn-1=$\frac{n+1}{3}$an-1,
兩式相減得:an=$\frac{n+2}{3}$an-$\frac{n+1}{3}$an-1,
整理得:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n+1}{n-1}$,
∴$\frac{{a}_{n-1}}{{a}_{n-2}}$=$\frac{n}{n-2}$,$\frac{{a}_{n-2}}{{a}_{n-3}}=\frac{n-1}{n-3}$,…,$\frac{{a}_{2}}{{a}_{1}}=\frac{3}{1}$,
累乘得:$\frac{{a}_{n}}{{a}_{1}}$=$\frac{n(n+1)}{2}$,
∴an=$\frac{n(n+1)}{2}$$•\frac{1}{3}$=$\frac{n(n+1)}{6}$,
故答案為:$\frac{n(n+1)}{6}$.
點評 本題考查數(shù)列的通項,利用累乘法是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com