解關(guān)于x的不等式:(x+a)(x-2a+1)<0.
考點(diǎn):其他不等式的解法
專(zhuān)題:不等式的解法及應(yīng)用
分析:討論a=
1
3
時(shí),a>
1
3
時(shí),a<
1
3
時(shí),原不等式的解集情況,從而求出答案來(lái).
解答: 解:方程(x+a)(x-2a+1)=0的解為x1=-a,x2=2a-1
當(dāng)a=
1
3
時(shí),不等式解為Φ;
當(dāng)a>
1
3
時(shí),解集為{x|-a<x<2a-1}
當(dāng)a<
1
3
時(shí),解集為{x|2a-1<x<-a}
點(diǎn)評(píng):本題考查了含有字母系數(shù)的不等式的解法問(wèn)題,解題時(shí)應(yīng)對(duì)字母系數(shù)進(jìn)行分類(lèi)討論,是易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin22α+sin2αcosα-cos2α=1,α∈(0,
π
2
),求α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三條兩兩平行的直線(xiàn)可以確定平面的個(gè)數(shù)為( 。
A、0B、1C、0或1D、1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l經(jīng)過(guò)點(diǎn)A(0,4),且與直線(xiàn)2x-y-3=0垂直,那么直線(xiàn)l的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=sin(x+
π
4
)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)2的倍,再向左平移
π
2
個(gè)單位,所得圖象的函數(shù)解析式是(  )
A、y=-sin(2x+
π
4
B、y=sin(2x+
4
C、y=cos
x
2
D、y=sin(
x
2
+
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是公差為2的等差數(shù)列,且a1+1,a3+1,a7+1成等比數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)令bn=
1
an2-1
(n∈N*),求數(shù)列{bn}的前n項(xiàng)和為T(mén)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax-a-x(a>0且a≠1).
(1)判斷函數(shù)f(x)的奇偶性;
(2)若f(1)<0,試判斷 函數(shù)f(x)的單調(diào)性.并求使不等式f(x2+tx)+f(4-x)<0對(duì)一切x∈R恒成立的t的取值范圍;
(3)若f(1)=
3
2
,g(x)=a2x+a-2x-2mf(x)且g(x)在[1,+∞)上的最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,已知a1=a,a2=b,an+1+an-1=an(n≥2),則a92等于(  )
A、aB、bC、b-aD、a-b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x-1
2x+1

(Ⅰ)判斷函數(shù)的奇偶性,并加以證明;
(Ⅱ)判斷函數(shù)在其定義域上的單調(diào)性,并加以證明;
(Ⅲ)若不等式f(1-m)+f(1-m2)<0恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案