16.設(shè)$f(x)={sin^2}x-\sqrt{3}cosxcos({x+\frac{π}{2}})$,則f(x)在$[{0,\frac{π}{2}}]$上的單調(diào)遞增區(qū)間為[0,$\frac{π}{3}$].

分析 根據(jù)三角函數(shù)的輔助角公式進(jìn)行化簡(jiǎn)結(jié)合三角函數(shù)的性質(zhì)進(jìn)行求解即可.

解答 解:$f(x)={sin^2}x-\sqrt{3}cosxcos({x+\frac{π}{2}})$=sin2x+$\sqrt{3}$sinxcosx
=$\frac{1}{2}$(1-cos2x)+$\frac{\sqrt{3}}{2}$sin2x=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,
得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z,
∵x∈$[{0,\frac{π}{2}}]$,
∴當(dāng)k=0時(shí),-$\frac{π}{6}$≤x≤$\frac{π}{3}$,
即0≤x≤$\frac{π}{3}$,
即函數(shù)f(x)在$[{0,\frac{π}{2}}]$上的單調(diào)遞增區(qū)間為[0,$\frac{π}{3}$],
故答案為:[0,$\frac{π}{3}$].

點(diǎn)評(píng) 本題主要考查三角函數(shù)圖象和性質(zhì)的考查,利用輔助角公式進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且$\frac{tanA+tanB}{tanB}=\frac{2c}$.
(1)求角A的大;
(2)若$a=2\sqrt{3}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)$f(x)=2sin(\frac{π}{2}-x)•sinx+\sqrt{3}$cos2x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在$[-\frac{π}{12},\;\frac{π}{6}]$上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.8名象棋選手進(jìn)行單循環(huán)賽(即每?jī)擅x手比賽一場(chǎng)).規(guī)定兩人對(duì)局勝者得2分,平局各得1分,負(fù)者得0分,并按總得分由高到低進(jìn)行排序.比賽結(jié)束后,8名選手的得分各不相同,且第二名的得分與最后四名選手得分之和相等.則第二名選手的得分是(  )
A.14B.13C.12D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.根據(jù)如圖所示的偽代碼可知,輸出的結(jié)果為70.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且sinA+cos2$\frac{B+C}{2}$=1,D為BC上一點(diǎn),且$\overrightarrow{AD}=\frac{1}{4}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AC}$.
(1)求sinA的值;
(2)若a=4$\sqrt{2}$,b=5,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為直角梯形,AD∥BC,∠BAD=∠CBA=90°,PA=AB=BC=1,AD=2,E,F(xiàn),G分別為BC,PD,PC的中點(diǎn).
(1)求EF與DG所成角的余弦值;
(2)若M為EF上一點(diǎn),N為DG上一點(diǎn),是否存在MN,使得MN⊥平面PBC?若存在,求出點(diǎn)M,N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在△ABC中,a=1,b=$\sqrt{3}$,A=30°,則角C=( 。
A.60°B.30°或90°C.30°D.60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知過(guò)點(diǎn)P(1,0)的直線l交圓O:x2+y2=1于A,B兩點(diǎn),$|AB|=\sqrt{2}$,則直線l的方程為x-y-1=0或x+y-1=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案