分析 利用對數(shù)函數(shù)的性質化對數(shù)不等式為一次不等式得答案.
解答 解:當a>1時,loga(3x+1)>loga(-2x)?$\left\{\begin{array}{l}{3x+1>0}\\{-2x>0}\\{3x+1>-2x}\end{array}\right.$,解得:$-\frac{1}{5}$<x<0;
當0<a<1時,loga(3x+1)>loga(-2x)?$\left\{\begin{array}{l}{3x+1>0}\\{-2x>0}\\{3x+1<-2x}\end{array}\right.$,解得:$-\frac{1}{3}$<x<$-\frac{1}{5}$.
∴當a>1時,不等式loga(3x+1)>loga(-2x)的解集為($-\frac{1}{5}$,0);
當0<a<1時,不等式loga(3x+1)>loga(-2x)的解集為($-\frac{1}{3}$,$-\frac{1}{5}$).
點評 本題考查對數(shù)不等式的解法,考查了分類討論的數(shù)學思想方法,是基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2(e2+1) | B. | e2-1 | C. | e2+1 | D. | 2(e2-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com