已知向量
a
=(2cosωx,-1),
b
=(
3
sinωx+cosωx,1)(ω>0),函數(shù)f(x)=
a
b
的最小正周期為π.
(I)求函數(shù)f(x)的表達式及最大值;
(Ⅱ)若在x∈[0,
π
2
]
上f(x)≥a恒成立,求實數(shù)a的取值范圍.
(1)f(x)=
a
b
=2cosωx(
3
sinωx+cosωx)-1
=
3
sin2ωx+2cos2ωx-1=
3
sin2ωx+cos2ωx
=2sin(2ωx+
π
6

∵f(x)的最小正周期為T=
=π,解之得ω=1
∴函數(shù)f(x)的表達式為y=2sin(2x+
π
6
);
(2)當x∈[0,
π
2
]
時,2x+
π
6
[
π
6
,
6
]

∴當x=
π
6
時,y=2sin(2x+
π
6
)的最大值為2;
當x=
π
2
時,y=2sin(2x+
π
6
)的最小值為-1
因此,若在x∈[0,
π
2
]
上f(x)≥a恒成立,則a≤-1
即實數(shù)a的取值范圍為(-∞,-1].
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ),若向量
a
b
的夾角為60°,則直線xcosα-ysinα+
1
2
=0
與圓(x-cosβ)2+(y+sinβ)2=
1
2
的位置關系是( 。
A、相交B、相切
C、相離D、相交且過圓心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ),若
a
b
的夾角為60°,則直線2xcosα-2ysinα+1=0與圓(x-cosβ)2+(y+sinβ)2=1的位置關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ),
a
b
的夾角為60°,則直線xcosα-ysinα+1=0與圓(x-cosβ)2+(y+sinβ)2=1的位置關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•德州二模)已知向量
a
=(2cosωx,-1),
b
=(
3
sinωx+cosωx,1)(ω>0),函數(shù)f(x)=
a
b
的最小正周期為π.
(I)求函數(shù)f(x)的表達式及最大值;
(Ⅱ)若在x∈[0,
π
2
]
上f(x)≥a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ),若<
a
,
b
>=60°,則直線:xcosα-ysinα+
1
2
=0與圓:(x-cosβ)2+(y+sinβ)2=1的位置關系是(  )

查看答案和解析>>

同步練習冊答案