【題目】關(guān)于函數(shù)有下述四個結(jié)論:

①函數(shù)的圖象把圓的面積兩等分;

是周期為的函數(shù);

③函數(shù)在區(qū)間上有個零點;

④函數(shù)在區(qū)間上單調(diào)遞減.

則正確結(jié)論的序號為_______________.

【答案】①④

【解析】

化簡函數(shù)的解析式,判斷該函數(shù)的奇偶性,可判斷命題①的正誤;利用特殊值法可判斷命題②的正誤;利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,可判斷命題③④的正誤.綜合可得出結(jié)論.

,定義域為.

對于命題①,

函數(shù)為奇函數(shù),該函數(shù)的圖象關(guān)于原點對稱,而圓也關(guān)于原點對稱,

所以,函數(shù)的圖象把圓的面積兩等分,命題①正確;

對于命題②,,,,命題②錯誤;

對于命題④,,所以,函數(shù)區(qū)間上單調(diào)遞減,命題④正確;

對于命題③,由于函數(shù)區(qū)間上單調(diào)遞減,且,

所以,函數(shù)在區(qū)間上有個零點,命題③錯誤.

因此,正確命題的序號為:①④.

故答案為:①④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是.以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是t為參數(shù)),直線l與曲線C相交于A,B兩點.

1)求的長;

2)求點A,B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為,以為折痕把折起,使點到達(dá)點的位置,且.

(Ⅰ)證明:平面平面

(Ⅱ)若的中點,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)質(zhì)量檢驗員為了檢測生產(chǎn)線上零件的質(zhì)量情況,從生產(chǎn)線上隨機抽取了個零件進(jìn)行測量,根據(jù)所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:

1)根據(jù)頻率分布直方圖,求這個零件尺寸的中位數(shù)(結(jié)果精確到);

2)若從這個零件中尺寸位于之外的零件中隨機抽取個,設(shè)表示尺寸在上的零件個數(shù),求的分布列及數(shù)學(xué)期望;

3)已知尺寸在上的零件為一等品,否則為二等品,將這個零件尺寸的樣本頻率視為概率. 現(xiàn)對生產(chǎn)線上生產(chǎn)的零件進(jìn)行成箱包裝出售,每箱. 企業(yè)在交付買家之前需要決策是否對每箱的所有零件進(jìn)行檢驗,已知每個零件的檢驗費用為. 若檢驗,則將檢驗出的二等品更換為一等品;若不檢驗,如果有二等品進(jìn)入買家手中,企業(yè)要向買家對每個二等品支付元的賠償費用. 現(xiàn)對一箱零件隨機抽檢了個,結(jié)果有個二等品,以整箱檢驗費用與賠償費用之和的期望值作為決策依據(jù),該企業(yè)是否對該箱余下的所有零件進(jìn)行檢驗?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點P與點的距離比它到直線的距離小1.

1)求動點P的軌跡C的方程;

2)設(shè)P為直線上任一點,過點P作曲線C的切線,切點分別為A,B,直線,y軸分別交于MN兩點,點的縱坐標(biāo)分別為m,n,求證:mn的乘積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)fx)在[0,π]上的單調(diào)遞減區(qū)間;

2)在銳角△ABC的內(nèi)角A,B,C所對邊為a,bc,已知fA)=﹣1,a2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了比較兩種治療某病毒的藥(分別稱為甲藥,乙藥)的療效,某醫(yī)療團隊隨機地選取了服用甲藥的患者和服用乙藥的患者進(jìn)行研究,根據(jù)研究的數(shù)據(jù),繪制了如圖1等高條形圖

.

1)根據(jù)等高條形圖,判斷哪一種藥的治愈率更高,不用說明理由;

2)為了進(jìn)一步研究兩種藥的療效,從服用甲藥的治愈患者和服用乙藥的治愈患者中,分別抽取了10名,記錄他們的治療時間(單位:天),統(tǒng)計并繪制了如圖2莖葉圖,從莖葉圖看,哪一種藥的療效更好,并說明理由;

3)標(biāo)準(zhǔn)差s除了可以用來刻畫一組數(shù)據(jù)的離散程度外,還可以刻畫每個數(shù)據(jù)偏離平均水平的程度,如果出現(xiàn)了治療時間在(3s,3s)之外的患者,就認(rèn)為病毒有可能發(fā)生了變異,需要對該患者進(jìn)行進(jìn)一步檢查,若某服用甲藥的患者已經(jīng)治療了26天還未痊愈,請結(jié)合(2)中甲藥的數(shù)據(jù),判斷是否應(yīng)該對該患者進(jìn)行進(jìn)一步檢查?

參考公式:s

參考數(shù)據(jù):48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),關(guān)于函數(shù)有下列結(jié)論:

;

②函數(shù)的圖象是中心對稱圖形,且對稱中心是;

③若的極大值點,則在區(qū)間單調(diào)遞減;

④若的極小值點,且,則有且僅有一個零點.

其中正確的結(jié)論有________(填寫出所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,

1)討論函數(shù)的單調(diào)性;

2)若(其中),證明:;

3)是否存在實數(shù)a,使得在區(qū)間內(nèi)恒成立,且關(guān)于x的方程內(nèi)有唯一解?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案