(本題15分)已知橢圓C的中心在原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到左、右焦點(diǎn)的距離之和為,離心率.
(1)求橢圓C的方程;
(2)過(guò)左焦點(diǎn)的直線與橢圓C交于點(diǎn),以為鄰邊作平行四邊形,求該平行四邊形對(duì)角線的長(zhǎng)度的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題15分) 已知橢圓的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為,直線交橢圓于不同的兩點(diǎn),.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,且,求的值(點(diǎn)為坐標(biāo)原點(diǎn));
(Ⅲ)若坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題15分)已知橢圓的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為,直線交橢圓于不同的兩點(diǎn),.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,且,求的值(點(diǎn)為坐標(biāo)原點(diǎn));
(Ⅲ)若坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分15分)
已知橢圓C:+=1(a>b>0)的離心率為,且經(jīng)過(guò)點(diǎn)P(1,).
(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的右焦點(diǎn),M為橢圓上一點(diǎn),以M為
圓心,MF為半徑作圓M.問點(diǎn)M橫坐標(biāo)滿足什么條
件時(shí),圓M與y軸有兩個(gè)交點(diǎn)?
(3)設(shè)圓M與y軸交于D、E兩點(diǎn),
求點(diǎn)D、E距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分15分)
已知橢圓C:+=1(a>b>0)的離心率為,且經(jīng)過(guò)點(diǎn)P(1,).
(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的右焦點(diǎn),M為橢圓上一點(diǎn),以M為
圓心,MF為半徑作圓M.問點(diǎn)M橫坐標(biāo)滿足什么條
件時(shí),圓M與y軸有兩個(gè)交點(diǎn)?
(3)設(shè)圓M與y軸交于D、E兩點(diǎn),
求點(diǎn)D、E距離的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com