(本題15分)已知橢圓的離心率為,短軸的一個端點到右焦點的距離為,直線交橢圓于不同的兩點,.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,且,求的值(點為坐標原點);
(Ⅲ)若坐標原點到直線的距離為,求面積的最大值.
科目:高中數(shù)學 來源: 題型:
(本題15分) 已知橢圓的離心率為,短軸的一個端點到右焦點的距離為,直線交橢圓于不同的兩點,.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,且,求的值(點為坐標原點);
(Ⅲ)若坐標原點到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分15分)已知橢圓的離心率為,點是橢圓上一定點,若斜率為的直線與橢圓交于不同的兩點、.
(I)求橢圓方程;(II)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源:2012屆浙江省溫州市高三下學期第三次理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分15分)已知橢圓的中心在原點,焦點在軸上,經過點,離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)橢圓的左、右頂點分別為、,點為直線上任意一點(點不在軸上),
連結交橢圓于點,連結并延長交橢圓于點,試問:是否存在,使得成立,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆江蘇省高二秋學期期末考試數(shù)學 題型:解答題
(本題滿分15分)已知橢圓的兩焦點為F1(),F2(1,0),直線x = 4是橢圓的一條準線.
(1)求橢圓方程;
(2)設點P在橢圓上,且,求cos∠F1PF2的值;
(3)設P是橢圓內一點,在橢圓上求一點Q,使得最。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com