分析:根據(jù)題意可求得數(shù)列{a
n}的通項(xiàng)公式,進(jìn)而求得
,根據(jù)2n
2-(n+1)
2=(n-1)
2-2,進(jìn)而可知當(dāng)當(dāng)n≥3時(shí),(n-1)
2-2>0,
推斷出當(dāng)n≥3時(shí)數(shù)列單調(diào)增,n<3時(shí),數(shù)列單調(diào)減,進(jìn)而可知n=3時(shí)a
n取到最小值求得數(shù)列的最小值,進(jìn)而可知a
k的值.
解答:解:a
n=
=
(n∈N),
∴
=
,
∵2n
2-(n+1)
2=(n-1)
2-2,當(dāng)n≥3時(shí),(n-1)
2-2>0,
∴當(dāng)n≥3時(shí)a
n+1>a
n;
當(dāng),n<3時(shí),(n-1)
2-2<O,所以當(dāng)n<3時(shí)a
n+1<a
n.
∴當(dāng)n=3時(shí)a
n取到最小值為f(3)=
故答案為:
點(diǎn)評(píng):本題主要考查了數(shù)列和不等式的綜合運(yùn)用.考查了學(xué)生綜合運(yùn)用所學(xué)知識(shí)解決問(wèn)題的能力.