【題目】已知ABC的內角A,BC所對邊分別為a、b、c,且2acosC=2b-c

1)求角A的大;

2)若AB=3,AC邊上的中線SD的長為,求ABC的面積.

【答案】(1)A=;(26

【解析】

1)先根據(jù)正弦定理化邊為角,再利用三角形內角關系以及兩角和正弦公式化簡得cosA=,即得結果,(2)根據(jù)余弦定理求AD,再根據(jù)三角形面積公式得結果.

1)∵2acosC=2b-c,由正弦定理可得:sinAcosC+sinC=sinB,

sinB=sinA+C=sinAcosC+cosAsinC

sinC=cosAsinC,∵sinC≠0,∴cosA=,

∴由A0π),可得角A=

2)在ABD中,AB=3,BD=,cosA=

由余弦定理可得:13=9+AD2-3AD,解得:AD=4(負值舍去),

BDAC邊上的中線,∴DAC的中點,∴AC=2AD=8

SABC=ABACsinA==6

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】繼共享單車之后,又一種新型的出行方式------“共享汽車”也開始亮相北上廣深等十余大中城市,一款叫“一度用車”的共享汽車在廣州提供的車型是“奇瑞eQ”,每次租車收費按行駛里程加用車時間,標準是“1元/公里+0.1元/分鐘”,李先生家離上班地點10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開車花費的時間是一個隨機變量,根據(jù)一段時間統(tǒng)計40次路上開車花費時間在各時間段內的情況如下:

時間(分鐘)

次數(shù)

8

14

8

8

2

以各時間段發(fā)生的頻率視為概率,假設每次路上開車花費的時間視為用車時間,范圍為分鐘.

(Ⅰ)若李先生上.下班時租用一次共享汽車路上開車不超過45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設是4次使用共享汽車中最優(yōu)選擇的次數(shù),求的分布列和期望.

(Ⅱ)若李先生每天上下班使用共享汽車2次,一個月(以20天計算)平均用車費用大約是多少(同一時段,用該區(qū)間的中點值作代表).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】手機支付也稱為移動支付,是指允許移動用戶使用其移動終端(通常是手機)對所消費的商品或服務進行賬務支付的一種服務方式.繼卡類支付、網(wǎng)絡支付后,手機支付儼然成為新寵.某金融機構為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機抽樣調查,調查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有100個人,把這100個人按照年齡分成5組,然后繪制成如圖所示的頻率分布表和頻率分布直方圖.

組數(shù)

第l組

第2組

第3組

第4組

第5組

分組

頻數(shù)

20

36

30

10

4

(1)求;

(2)從第l,3,4組中用分層抽樣的方法抽取6人,求第l,3,4組抽取的人數(shù):

(3)在(2)抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)其中,為常數(shù)且處取得極值.

1時,求的單調區(qū)間;

2上的最大值為1,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線方程為.

(1)求的解析式;

(2)判斷方程內的解的個數(shù),并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,以軸正半軸為極軸建立極坐標系,已知曲線的極坐標方程為.

(1)求曲線的直角坐標方程;

(2)若兩條互相垂直的直線都經(jīng)過原點(兩條直線與坐標軸都不重合)且與曲線分別交于點(異于原點),且,求這兩條直線的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校共有教職工900,分成三個批次進行繼續(xù)教育培訓,在三個批次中男、女教職工人數(shù)如下表所示. 已知在全體教職工中隨機抽取1,抽到第二批次中女教職工的概率是0.16 .

1)求的值;

2)現(xiàn)用分層抽樣的方法在全體教職工中抽取54名做培訓效果的調查, 問應在第三批次中抽取教職工多少名?

3)已知,求第三批次中女教職工比男教職工多的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】法國有個名人叫做布萊爾·帕斯卡,他認識兩個賭徒,這兩個賭徒向他提出一個問題,他們說,他們下賭金之后,約定誰先贏滿5局,誰就獲得全部賭金700法郎,賭了半天,甲贏了4局,乙贏了3局,時間很晚了,他們都不想再賭下去了.假設每局兩賭徒輸贏的概率各占,每局輸贏相互獨立,那么這700法郎如何分配比較合理(

A.400法郎,乙300法郎B.500法郎,乙200法郎

C.525法郎,乙175法郎D.350法郎,乙350法郎

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】長方體中,

(1)求直線所成角;

(2)求直線與平面所成角的正弦.

查看答案和解析>>

同步練習冊答案