【題目】若橢圓:()與橢圓:()的焦距相等,給出如下四個(gè)結(jié)論:
①和一定有交點(diǎn);
②若,則;
③若,則;
④設(shè)與在第一象限內(nèi)相交于點(diǎn),若,則.
其中,所有正確結(jié)論的序號(hào)是______.
【答案】②④
【解析】
通過(guò)時(shí)的圖像可知和沒(méi)有交點(diǎn),根據(jù)兩橢圓相同,結(jié)合,得到,根據(jù)分析法得到所需條件與矛盾,根據(jù)橢圓對(duì)稱(chēng)性,結(jié)合得到兩橢圓之間離心率的關(guān)系,從而得到.
對(duì)于結(jié)論①,當(dāng)時(shí),橢圓的圖像完全在橢圓的內(nèi)部,
此時(shí)和沒(méi)有交點(diǎn),所以①錯(cuò)誤;
對(duì)于結(jié)論②,因?yàn)閮蓹E圓的焦距相等,即相等,可得,
因?yàn)?/span>,所以得到
由可得,
所以得到,
所以得到,所以②正確;
對(duì)于結(jié)論③,由可得,
即,即,
從而得到,與條件中的矛盾,
所以③錯(cuò)誤;
對(duì)于結(jié)論④,因?yàn)閮蓹E圓的相同,若兩橢圓的離心率相同,
則根據(jù)對(duì)稱(chēng)性可知,兩橢圓在第一象限的交點(diǎn),其橫縱坐標(biāo)應(yīng)相等,
而此時(shí)與在第一象限內(nèi)相交于點(diǎn),,
則橢圓更接近圓,或橢圓更扁,即,
所以,得到,
所以④正確.
故答案為:②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示在四棱錐中,下底面為正方形,平面平面,為以為斜邊的等腰直角三角形,,若點(diǎn)是線段上的中點(diǎn).
(1)證明平面.
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令.求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年時(shí)紅軍長(zhǎng)征勝利80周年,某市電視臺(tái)舉辦紀(jì)念紅軍長(zhǎng)征勝利80周年知識(shí)問(wèn)答,宣傳長(zhǎng)征精神.首先在甲、乙、丙、丁四個(gè)不同的公園進(jìn)行支持簽名活動(dòng).
公園 | 甲 | 乙 | 丙 | 丁 |
獲得簽名人數(shù) | 45 | 60 | 30 | 15 |
然后在各公園簽名的人中按分層抽樣的方式抽取10名幸運(yùn)之星回答問(wèn)題,從10個(gè)關(guān)于長(zhǎng)征的問(wèn)題中隨機(jī)抽取4個(gè)問(wèn)題讓幸運(yùn)之星回答,全部答對(duì)的幸運(yùn)之星獲得一份紀(jì)念品.
(Ⅰ)求此活動(dòng)中各公園幸運(yùn)之星的人數(shù);
(Ⅱ)若乙公園中每位幸運(yùn)之星對(duì)每個(gè)問(wèn)題答對(duì)的概率均為,求恰好2位幸運(yùn)之星獲得紀(jì)念品的概率;
(Ⅲ)若幸運(yùn)之星小李對(duì)其中8個(gè)問(wèn)題能答對(duì),而另外2個(gè)問(wèn)題答不對(duì),記小李答對(duì)的問(wèn)題數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,兩直角邊AB,AC的長(zhǎng)分別為m,n(其中),以BC的中點(diǎn)O為圓心,作半徑為r()的圓O.
(1)若圓O與的三邊共有4個(gè)交點(diǎn),求r的取值范圍;
(2)設(shè)圓O與邊BC交于P,Q兩點(diǎn);當(dāng)r變化時(shí),甲乙兩位同學(xué)均證明出為定值甲同學(xué)的方法為:連接AP,AQ,AO,利用兩個(gè)小三角形中的余弦定理來(lái)推導(dǎo);乙同學(xué)的方法為;以O為原點(diǎn)建立合適的直角坐標(biāo)系,利用坐標(biāo)法來(lái)計(jì)算.請(qǐng)?jiān)诩滓覂晌煌瑢W(xué)的方法中選擇一種來(lái)證明該結(jié)論,定值用含m、n的式子表示.(若用兩種方法,按第一種方法給分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)結(jié)論:①都是不等于的實(shí)數(shù),關(guān)于的不等式和的解集分別為,則當(dāng)是的既不充分也不必要條件;②;③;④若,則的取值范圍是.其中正確的個(gè)數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若函數(shù)有2個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)若,關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com