【題目】如圖,在直三棱柱中,上的一點(diǎn),,且.

(1)求證:平面

(2)若,求點(diǎn)到平面的距離.

【答案】(1)見解析;(2)

【解析】

(1)連接A1B交AB1于E,連接DE,根據(jù)中位線定理即可得出DE∥A1C,故而A1C∥平面AB1D1;

(2)過B作BF⊥B1D,則可證BF平面AB1D,于是點(diǎn)A1到平面AB1D的距離等于C到平面AB1D的距離,等于B到平面AB1D的距離BF.

(1)如圖,

連接,交于點(diǎn),再連接,

據(jù)直棱柱性質(zhì)知,四邊形為平行四邊形,的中點(diǎn),

∵當(dāng)時(shí),,的中點(diǎn),∴,

平面平面,平面.

(2)如圖,在平面中,過點(diǎn),垂足為,

中點(diǎn),

∴點(diǎn)到平面與點(diǎn)到平面距離相等,

平面∴點(diǎn)到平面的距離等于點(diǎn)到平面的距離,

長(zhǎng)為所求,在中,,,,

∴點(diǎn)到平面的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某程序框圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù),則可以輸出的函數(shù)是(

A.f(x)=x2
B.f(x)=sinx
C.f(x)=ex
D.f(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+ ax2﹣2bx
(1)設(shè)點(diǎn)a=﹣3,b=1,求f(x)的最大值;
(2)當(dāng)a=0,b=﹣ 時(shí),方程2mf(x)=x2有唯一實(shí)數(shù)解,求正數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的方程 正實(shí)數(shù)解有且僅有一個(gè),那么實(shí)數(shù)a的取值范圍為(
A.{a|a≤0}
B.{a|a≤0或a=2}
C.{a|a≥0}
D.{a|a≥0或a=﹣2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對(duì)任意x∈A,y∈B,(AR,BR)有唯一確定的f(x,y)與之對(duì)應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”;
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);
(2)對(duì)稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
今給出三個(gè)二元函數(shù),請(qǐng)選出所有能夠成為關(guān)于x、y的廣義“距離”的序號(hào):
①f(x,y)=|x﹣y|;②f(x,y)=(x﹣y)2;③
能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f(x)的定義域?yàn)?0,+∞),且對(duì)一切x>0,y>0都有ff(x)-f(y),當(dāng)x>1時(shí),有f(x)>0。

(1)求f(1)的值;

(2)判斷f(x)的單調(diào)性并證明;

(3)若f(6)=1,解不等式f(x+3)-f<2;

(4)若f(4)=2,求f(x)在[1,16]上的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四棱臺(tái)ABCDA1B1C1D1中,上底面A1B1C1D1邊長(zhǎng)為1,下底面ABCD邊長(zhǎng)為2,側(cè)棱與底面所成的角為60°,則異面直線AD1B1C所成角的余弦值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),設(shè)函數(shù)f(x)= +λ(x∈R)的圖象關(guān)于直線x=π對(duì)稱,其中ω,λ為常數(shù),且ω∈( ,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(diǎn)( ,0)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·四川)已知函數(shù)f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)設(shè)g(x)是f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性;
(2)證明:存在a(0,1),使得f(x)≥0,在區(qū)間(1,+)內(nèi)恒成立,且f(x)=0在(1,+)內(nèi)有唯一解.

查看答案和解析>>

同步練習(xí)冊(cè)答案