分析 (Ⅰ)當n=1時,a1=s1=1,當n≥2時,${a}_{n}={s}_{n}-{s}_{n-1}=\frac{{n}^{2}+3n}{4}-\frac{(n-1)^{2}+3(n-1)}{4}$=$\frac{n+1}{2}$;
(Ⅱ)由(Ⅰ)得${a}_{n}=\frac{n+1}{2},_{n}={2}^{n+1}$;$\frac{1}{_{1}}+\frac{1}{_{2}}+\frac{1}{_{3}}+…\frac{1}{_{n}}$=$\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+\frac{1}{{2}^{4}}+…+\frac{1}{{2}^{n+1}}$=$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}=\frac{1}{2}(1-\frac{1}{{2}^{n}})$
解答 解:(Ⅰ)當n=1時,a1=s1=1,
當n≥2時,${a}_{n}={s}_{n}-{s}_{n-1}=\frac{{n}^{2}+3n}{4}-\frac{(n-1)^{2}+3(n-1)}{4}$=$\frac{n+1}{2}$
經(jīng)檢驗${a}_{1}也符合{a}_{n}=\frac{n+1}{2}$,∴${a}_{n}=\frac{n+1}{2}…(n∈{N}^{+})$.
(Ⅱ)由(Ⅰ)得${a}_{n}=\frac{n+1}{2}∴_{n}={2}^{n+1}$;
$\frac{1}{_{1}}+\frac{1}{_{2}}+\frac{1}{_{3}}+…\frac{1}{_{n}}$=$\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+\frac{1}{{2}^{4}}+…+\frac{1}{{2}^{n+1}}$=$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}=\frac{1}{2}(1-\frac{1}{{2}^{n}})$
點評 本題考查了等比數(shù)列的通項及求和,及公式an=sn-sn-1的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ②③ | B. | ①③④ | C. | ①②④ | D. | ①②③④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | $\sqrt{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com