【題目】如圖,PA、PC切⊙O于A、C,PBD為⊙O的割線.

(1)求證:ADBC=ABDC;
(2)已知PB=2,PA=3,求△ABC與△ACD的面積之比.

【答案】
(1)證明:∵PA是⊙O的切線,

由弦切角定理得∠PAB=∠ADB,

∵∠APB為△PAB與△PAD的公共角,

∴△PAB∽△PDA,

,

同理

又PA=PC,

,

∴ADBC=ABDC


(2)解:由圓的內(nèi)接四邊形的性質(zhì)得∠ABC+∠ADC=π,

∴SABC= ABBCsin∠ABC,

SADC= ADDCsin∠ADC,

= = = =


【解析】(1)證明△PAB∽△PDA,可得 ,同理可得 ,問題得以證明,(2)根據(jù)圓內(nèi)接四邊形的性質(zhì)和三角形的面積公式可得 = ,問題得以解決.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,離心率為,橢圓與軸與左點(diǎn)與點(diǎn)的距離為

(1)求橢圓方程;

(2)過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),當(dāng)面積為時(shí),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓+=1的焦點(diǎn)分別是、, 是橢圓上一點(diǎn),若連結(jié)、、三點(diǎn)恰好能構(gòu)成直角三角形,則點(diǎn)軸的距離是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若函數(shù)恰有兩個(gè)不相同的零點(diǎn),求實(shí)數(shù)的值;

(2)記為函數(shù)的所有零點(diǎn)之和,當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C1 +y2=1,橢圓C2 (a>b>0)的一個(gè)焦點(diǎn)坐標(biāo)為( ,0),斜率為1的直線l與橢圓C2相交于A、B兩點(diǎn),線段AB的中點(diǎn)H的坐標(biāo)為(2,﹣1).
(1)求橢圓C2的方程;
(2)設(shè)P為橢圓C2上一點(diǎn),點(diǎn)M、N在橢圓C1上,且 ,則直線OM與直線ON的斜率之積是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),給出下列結(jié)論:

(1)若對任意,且,都有,則為R上減函數(shù);

(2) 若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);

(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);

(4)若一個(gè)函數(shù)定義域的奇函數(shù),當(dāng)時(shí),,則當(dāng)x<0時(shí),其中正確的是____________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐A﹣BCD中,AB、AC、AD兩兩垂直且長度均為10,定長為 的線段MN的一個(gè)端點(diǎn)M在棱AB上運(yùn)動,另一個(gè)端點(diǎn)N在△ACD內(nèi)運(yùn)動(含邊界),線段MN的中點(diǎn)P的軌跡的面積為2π,則m的值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中有高一新生500名,分成水平相同的兩類教學(xué)實(shí)驗(yàn),為對比教學(xué)效果,現(xiàn)用分層抽樣的方法從兩類學(xué)生中分別抽取了40人,60人進(jìn)行測試

1)求該學(xué)校高一新生兩類學(xué)生各多少人?

2)經(jīng)過測試,得到以下三個(gè)數(shù)據(jù)圖表:

175分以上兩類參加測試學(xué)生成績的莖葉圖

2100名測試學(xué)生成績的頻率分布直方圖

下圖表格:100名學(xué)生成績分布表:

先填寫頻率分布表中的六個(gè)空格,然后將頻率分布直方圖(圖2)補(bǔ)充完整;

該學(xué)校擬定從參加考試的79分以上(含79分)的類學(xué)生中隨機(jī)抽取2人代表學(xué)校參加市比賽,求抽到的2人分?jǐn)?shù)都在80分以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】工廠需要圍建一個(gè)面積為512的矩形堆料場,一邊可以利用原有的墻壁,其他三邊需要砌新的墻壁.我們知道,砌起的新墻的總長度(單位: )是利用原有墻壁長度(單位: )的函數(shù).

(1)寫出關(guān)于的函數(shù)解析式,確定的取值范圍.

(2)堆料場的長、寬之比為多少時(shí),需要砌起的新墻用的材料最省?

查看答案和解析>>

同步練習(xí)冊答案