17.下列說法中,正確的是(  )
A.數(shù)據(jù)5,4,4,3,5,2的眾數(shù)是4
B.根據(jù)樣本估計總體,其誤差與所選擇的樣本容量無關(guān)
C.數(shù)據(jù)2,3,4,5的標(biāo)準(zhǔn)差是數(shù)據(jù)4,6,8,10的標(biāo)準(zhǔn)差的一半
D.頻率分布直方圖中各小長方形的面積等于相應(yīng)各組的頻數(shù)

分析 這種問題考查的內(nèi)容比較散,需要挨個檢驗,A中眾數(shù)有兩個4和5,又因為一組數(shù)據(jù)的標(biāo)準(zhǔn)差是這組事件的方差的平方根,C可以根據(jù)所給的數(shù)據(jù),看出第二組是由第一組乘以2得到的,前一組的方差是后一組的四分之一,標(biāo)準(zhǔn)差是一半,頻率分步直方圖中各個小正方形的面積是各組相應(yīng)的頻率.

解答 解:對于A:眾數(shù)有兩個4和5,A是錯誤;
對于B:B中說法錯誤,因為一組數(shù)據(jù)的標(biāo)準(zhǔn)差是這組事件的方差的平方根,故B錯誤;
對于C:可以根據(jù)所給的數(shù)據(jù),看出第二組是由第一組乘以2得到的,
前一組的方差是后一組的四分之一,標(biāo)準(zhǔn)差是一半,故C正確,
對于D:頻率分步直方圖中各個小正方形的面積是各組相應(yīng)的頻率,故D錯誤;
故選:C.

點評 本題主要考查平均數(shù)和方差的變換特點,若在原來數(shù)據(jù)前乘以同一個數(shù),平均數(shù)也乘以同一個數(shù),而方差要乘以這個數(shù)的平方,在數(shù)據(jù)上同加或減同一個數(shù),方差不變.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖長方體ABCD-A1B1C1D1中,E,F(xiàn),G分別是棱AB,DC,D1C1的中點.
求證:(1)EG∥平面ADD1A1;
(2)平面EFG⊥平面A1B1CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an},其前n項和為${S_n}=\frac{3}{2}{n^2}+\frac{7}{2}n\;(n∈{N^*})$.
(Ⅰ)求數(shù)列{an}的通項公式,并證明數(shù)列{an}是等差數(shù)列;
(Ⅱ)若數(shù)列{bn}滿足${b_n}={2^{{a_n}-2}}$,求數(shù)列{bn}的通項公式,并證明數(shù)列{bn}是等比數(shù)列;
(Ⅲ)若數(shù)列{cn}滿足${c_n}={a_n}•{b_n}^{\frac{1}{3}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.程序框圖如圖,如果程序運行的結(jié)果為S=132,若要使輸出的結(jié)果為1320,則正確的修改方法是( 。 
A.在①處改為k=13,s=1B.在②處改為K<10
C.在③處改為S=S×(K-1)D.在④處改為K=K-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,P,Q分別是線段CC1,BD上的點,滿足PQ∥平面AC1D1,則PQ與平面BDD1B1所成角的范圍是($\frac{π}{6}$,$\frac{π}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知二面角α-l-β,空間中有一點A,且AC⊥α于C,AB⊥β于B,若∠BAC=75°,則二面角α-l-β的大小為75°或105°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知兩個非零平面向量$\overrightarrow a,\overrightarrow b$滿足:對任意λ∈R恒有$|{\overrightarrow a-λ\overrightarrow b}|≥|{\overrightarrow a-\frac{1}{2}\overrightarrow b}|$,則:①若$|{\overrightarrow b}|=4$,則$\overrightarrow a•\overrightarrow b$=8;②若$\overrightarrow a,\overrightarrow b$的夾角為$\frac{π}{3}$,則$\frac{{|{2\overrightarrow a-t•\overrightarrow b}|}}{{|{\overrightarrow b}|}}$的最小值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在直三棱柱ABC-A1B1C1中,AC=4,CB=AA1=2,AB=2$\sqrt{3}$ E,F(xiàn),G分別是A1C1,BC,AA1的中點.
(1)證明:平面AEB⊥平面BB1CC1
(2)證明:C1F∥平面ABE
(3)求三棱錐C1-B1GF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.用分解因式法求解下列一元二次方程:
(1)2x2-7x+6=0;
(2)8x2-2x-1=0;
(3)2x2-x-28=0;
(4)12x2+25x+12=0;
(5)10x=3x2+8;
(6)2x2-11x+5=0.

查看答案和解析>>

同步練習(xí)冊答案