中角的對邊分別為,,則為(   )

A.             B.2               C.           D.

 

【答案】

D

【解析】

試題分析:在中,由正弦定理可得:,因為,所以,所以所以

考點:本小題主要考查正弦定理在解三角形中的應(yīng)用,考查學(xué)生的運算求解能力.

點評:用正弦定理解三角形,要判斷解的個數(shù),利用的工具就是“大邊對大角”.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆黑龍江省哈爾濱市高三9月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

中角的對邊分別為,且,

(1)求角的大;

(2)若,求面積的最大值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆安徽省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)在中,角的對邊分別為 且,bsin(+C)-c sin(+B)=a ,

(1)求證:

(2)若,求的面積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山西省高三上學(xué)期期末聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

中,角的對邊分別為,,.

(1) 求的值.

(2) 若,求.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省仙桃市高三第二次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

中,角的對邊分別為 若 若有兩解,則

的范圍是(     )

A.(1,2)   B.(2,3)    C.(2,)   D.(4,

 

查看答案和解析>>

同步練習(xí)冊答案