【題目】已知雙曲線以為焦點,且過點
(1)求雙曲線與其漸近線的方程
(2)若斜率為1的直線與雙曲線相交于兩點,且(為坐標原點),求直線的方程
【答案】(1)雙曲線C的方程為; 漸近線方程為.(2)l方程為.
【解析】
(1)設出雙曲線C方程,利用已知條件求出c,a,解得b,即可求出雙曲線方程與漸近線的方程;
(2)設直線l的方程為y=x+t,將其代入方程,通過△>0,求出t的范圍,設A(x1,y1),B(x2,y2),利用韋達定理,通過x1x2+y1y2=0,求解t即可得到直線方程.
(1)設雙曲線C的方程為,半焦距為c,
則c=2,,a=1,
所以b2=c2﹣a2=3,
故雙曲線C的方程為.
雙曲線C的漸近線方程為.
(2)設直線l的方程為y=x+t,將其代入方程,
可得2x2﹣2tx﹣t2﹣3=0(*)
△=4t2+8(t2+3)=12t2+24>0,若設A(x1,y1),B(x2,y2),
則x1,x2是方程(*)的兩個根,所以,
又由,可知x1x2+y1y2=0,
即x1x2+(x1+t)(x2+t)=0,可得,
故﹣(t2+3)+t2+t2=0,解得,
所以直線l方程為.
科目:高中數學 來源: 題型:
【題目】已知數列和滿足:,且成等比數列,成等差數列.
(1)行列式,且,求證:數列是等差數列;
(2)在(1)的條件下,若不是常數列,是等比數列,
①求和的通項公式;
②設是正整數,若存在正整數,使得成等差數列,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中,正確的序號是_____
①直線上有兩個點到平面的距離相等,則這條直線和這個平面平行;
②過球面上任意兩點的大圓有且只有一個;
③直四棱柱是直平行六面體;
④為異面直線,則過且與平行的平面有且僅有一個;
⑤兩相鄰側面所成角相等的棱錐是正棱錐.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在萬眾創(chuàng)新的大經濟背景下,某成都青年面包店推出一款新面包,每個面包的成本價為元,售價為元,該款面包當天只出一爐(一爐至少個,至多個),當天如果沒有售完,剩余的面包以每個元的價格處理掉,為了確定這一爐面包的個數,該店記錄了這款新面包最近天的日需求量(單位:個),整理得下表:
日需求量 | |||||
頻數 |
(1)根據表中數據可知,頻數與日需求量(單位:個)線性相關,求關于的線性回歸方程;
(2)以天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個數為,記當日這款新面包獲得的總利潤為(單位:元).求的分布列及其數學期望.
相關公式:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,長度為2的線段EF的兩端點E、F分別在兩坐標軸上運動.
(1)求線段EF的中點G的軌跡C的方程;
(2)設軌跡C與軸交于兩點,P是軌跡C上異于的任意一點,直線交直線于M點,直線交直線于N點,求證:以MN為直徑的圓C總過定點,并求出定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知分別是雙曲線E: 的左、右焦點,P是雙曲線上一點, 到左頂點的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當時, 的面積為,求此雙曲線的方程。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com