設(shè)變量x、y滿足數(shù)學(xué)公式,則x-2y的最小值________.

-8
分析:先根據(jù)條件畫出可行域,設(shè)z=x-2y,將最小值轉(zhuǎn)化為y軸上的截距最大,根據(jù)圖象可判斷,過可行域內(nèi)的點A(0,4)時,截距最大,從而得到z最小值即可.
解答:解:∵變量x,y滿足約束條件,在坐標(biāo)系中畫出可行域三角形,設(shè)z=x-2y,
作直線L:x-2y=0經(jīng)過點A(0,4))時,在y軸上的截距最大,z最小,
由A(0,4),得z=-8,
∴z=x-2y的最小值為-8.
故答案為:-8.
點評:本題主要考查了求解目標(biāo)函數(shù)的最值,用幾何方法處理代數(shù)問題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省大連市高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

設(shè)變量x,y滿足,則目標(biāo)函數(shù)z=2x+4y最大值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省煙臺二四中高二(上)期中數(shù)學(xué)模擬試卷(解析版) 題型:填空題

設(shè)變量x,y滿足,則目標(biāo)函數(shù)z=2x+4y最大值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省揭陽一中高二(上)段考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)變量x,y滿足,則目標(biāo)函數(shù)z=2x+4y最大值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市重點中學(xué)六校聯(lián)考高二(上)數(shù)學(xué)模擬試卷(3)(解析版) 題型:填空題

設(shè)變量x,y滿足,則目標(biāo)函數(shù)z=2x+4y最大值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年重慶市六校聯(lián)考高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)變量x,y滿足,則目標(biāo)函數(shù)z=2x+4y最大值為   

查看答案和解析>>

同步練習(xí)冊答案