1.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_3}x,\;\;x>0\\{2^x},x≤0.\end{array}\right.$則$f[{f({\frac{1}{27}})}]$的值為$\frac{1}{8}$.

分析 直接利用分段函數(shù),由里及外逐步求解即可.

解答 解:函數(shù)$f(x)=\left\{\begin{array}{l}{log_3}x,\;\;x>0\\{2^x},x≤0.\end{array}\right.$則$f[{f({\frac{1}{27}})}]$=f(log3$\frac{1}{27}$)=f(-3)=2-3=$\frac{1}{8}$.
故答案為:$\frac{1}{8}$.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上一點(diǎn)P到左焦點(diǎn)的距離為6,則點(diǎn)P到右焦點(diǎn)的距離是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知P為△ABC所在平面內(nèi)一點(diǎn),且滿足$\overrightarrow{AP}$=λ($\overrightarrow{AB}$+$\overrightarrow{AC}$),$\overrightarrow{BP}$=μ$\overrightarrow{BC}$(λ、μ∈R),則λ+μ=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)F1(-3,0),$e=\frac{3}{5}$,則橢圓的方程為$\frac{x^2}{25}+\frac{y^2}{16}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知數(shù)列{an}是等差數(shù)列,且a2+a5+a8=π,則sina5=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.關(guān)于x的方程x2+2(a-1)x+2a+6=0的兩根為α,β,且滿足0<α<1<β,則a的取值范圍是$(-3,-\frac{5}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知定義在R上的函數(shù)f(x)=ln(e2x+1)+ax(a∈R)是偶函數(shù).
(1)求實(shí)數(shù)a的值;
(2)判斷f(x)在[0,+∞)上的單調(diào)性,并用定義法證明;
(3)若f(x2+$\frac{1}{{x}^{2}}$)>f(mx+$\frac{m}{x}$)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若函數(shù)f(x)=x3-3ax+3a在(0,1)內(nèi)有極小值,則a的取值范圍0<a<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)二次函數(shù)f(x)=ax2+bx+c(a>b>c),已知f(1)=0,且存實(shí)數(shù)m,使f(m)=-a.
(1)試推斷$\frac{2a}$與0的大小,并說(shuō)明理由;
(2)設(shè)g(x)=f(x)+bx,對(duì)于x1,x2∈R,且x1≠x2,若g(x1)=g(x2)=0,求|x1-x2|的取值范圍;
(3)求證:f(m+3)>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案