已知=(cosα,sinα),=(cosβ,sinβ),且之間滿足關(guān)系:,其中k>0.

(Ⅰ)用k表示·

(Ⅱ)求·的最小值,并求此時(shí)夾角的大。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:江西省浮梁一中2007屆高三數(shù)學(xué)重組卷一(人教版) 題型:044

已知△ABC的面積S滿足3≤S≤3,且·=6,的夾角為α

(1)求α的取值范圍

(2)若函數(shù)f(α)=sin2α+2sinαcosα+3cos2α,求f(α)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:如皋中學(xué)2007-2008學(xué)年度第一學(xué)期階段考試高三數(shù)學(xué)(理科)試卷 題型:044

已知△ABC的面積S滿足3≤S≤3的夾角為α,

(Ⅰ)求α的取值范圍;

(Ⅱ)求f(α)=sin2α+2sinαcosα+3cos2α的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(四川卷) 題型:044

(Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;

②由Sα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ-cosαsinβ.

(Ⅱ)已知△ABC的面積S==3,且cosB=,求cosC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)①證明:兩角和的余弦公式C(αβ):cos(αβ)=cos αcos β-      sin αsin β;

②由C(αβ)推導(dǎo)兩角和的正弦公式S(αβ):sin(αβ)=sin αcos β+cos αsinβ.

(2)已知△ABC的面積S,·=3,且cos B,求cos C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的面積S滿足3≤S≤3,且·=6,的夾角為θ.

(1)求θ的取值范圍;

(2)求函數(shù)f(θ)=sin2θ+2sinθcosθ+3cos2θ的最大值.

查看答案和解析>>

同步練習(xí)冊答案