【題目】如圖,在四棱錐中,底面,底面是直角梯形,,,,是的中點(diǎn).
(1)求證:平面平面;
(2)若二面角的余弦值為,求直線與平面所成角的正弦值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
試題分析:(1)欲證平面平面,只要證平面即可;(2)設(shè),取中點(diǎn),以點(diǎn)為原點(diǎn),分別以為軸,建立空間直角坐標(biāo)系,求向量與平面的法向量的夾角即可.
試題解析:
(1)證明:∵平面,平面,
∴,
∵,,
∴,
∴,
∴,
又,
∴平面,
∵平面,
∴平面平面.
(2)解:設(shè),取中點(diǎn),以點(diǎn)為原點(diǎn),分別以為軸,建立空間直角坐標(biāo)系,
則,,,,,則,,,
取,則,即為面的一個(gè)法向量.
設(shè)為面的法向量,則,即
取,則,,則,
依題意得,取,
于是,,設(shè)直線與平面所成角為,則,
即直線與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如下圖示.
(Ⅰ)求直方圖中x的值;
(Ⅱ)求月平均用電量的眾數(shù)和中位數(shù);
(Ⅲ)在月平均用電量為[220,240),[240,260),[260,280)的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的房頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元.該建筑物每年的能源消耗費(fèi)用(單位:萬(wàn)元)與隔熱層厚度(單位:cm)滿足關(guān)系,若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元,設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求的值及的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=,anbn+1+bn+1=nbn.
(Ⅰ)分別求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)令cn= an bn,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)詢問(wèn)某大學(xué)40名不同性別的大學(xué)生在購(gòu)買(mǎi)食物時(shí)是否讀營(yíng)養(yǎng)說(shuō)明,得到如下列聯(lián)表:
性別與讀營(yíng)養(yǎng)說(shuō)明列聯(lián)表:
男 | 女 | 總計(jì) | |
讀營(yíng)養(yǎng)說(shuō)明 | 16 | 8 | 24 |
不讀營(yíng)養(yǎng)說(shuō)明 | 4 | 12 | 16 |
總計(jì) | 20 | 20 | 40 |
(Ⅰ)根據(jù)以上列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為性別與是否讀營(yíng)養(yǎng)說(shuō)明之間有關(guān)系?
(Ⅱ)從被詢問(wèn)的16名不讀營(yíng)養(yǎng)說(shuō)明的大學(xué)生中,隨機(jī)抽取2名學(xué)生,求抽到男生人數(shù)的分布列及其均值(即數(shù)學(xué)期望).
(注:,其中為樣本容量.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,其中均為實(shí)數(shù).
(I)求的極值;
(II)設(shè),,求證:對(duì),恒成立.
(III)設(shè),若對(duì)給定的,在區(qū)間上總存在使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),證明:在定義域上為減函數(shù);
(2)若時(shí),討論函數(shù)的零點(diǎn)情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正三棱柱(側(cè)棱垂直于底面,且底面是正三角形)中,是棱上一點(diǎn).
(1)若分別是的中點(diǎn),求證:平面;
(2)求證:不論在何位置,四棱錐的體積都為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)證明當(dāng)時(shí),關(guān)于的不等式恒成立;
(3)若正實(shí)數(shù)滿足,證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com