若正三棱柱的棱長(zhǎng)均相等,則與側(cè)面所成角的正切值為___.

試題分析:設(shè)棱長(zhǎng)為1.取中點(diǎn),連接,根據(jù)正三棱柱的特點(diǎn),,根據(jù)線面角的定義可知,與側(cè)面所成角,在中,.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓錐母線長(zhǎng)為6,底面圓半徑長(zhǎng)為4,點(diǎn)是母線的中點(diǎn),是底面圓的直徑,底面半徑與母線所成的角的大小等于

(1)當(dāng)時(shí),求異面直線所成的角;
(2)當(dāng)三棱錐的體積最大時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在空間直角坐標(biāo)系O-xyz中,正四棱錐P-ABCD的側(cè)棱長(zhǎng)與底邊長(zhǎng)都為,點(diǎn)M,N分別在PA,BD上,且

(1)求證:MN⊥AD;
(2)求MN與平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直棱柱ABC-中,D,E分別是AB,BB1的中點(diǎn),=AC=CB=AB.

(Ⅰ)證明: //平面
(Ⅱ)求二面角D--E的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:在四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,點(diǎn)M,N分別為BC,PA的中點(diǎn),且PA=AB=2.
(I)證明:BC⊥平面AMN;
(II)求三棱錐N-AMC的體積;
(III)在線段PD上是否存在一點(diǎn)E,使得NM平面ACE;若存在,求出PE的長(zhǎng);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在三棱錐中,,分別是的中點(diǎn),,則異面直線所成的角為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若四棱柱的底面是邊長(zhǎng)為1的正方形,且側(cè)棱垂直于底面,若與底面成60°角,則二面角的平面角的正切值為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

把正方形沿對(duì)角線折起,當(dāng)以四點(diǎn)為頂點(diǎn)的三棱錐體積最大時(shí),直線和平面所成的角的大小為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在二面角中,且 , , 則二面角的余弦值為________________。

查看答案和解析>>

同步練習(xí)冊(cè)答案