【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為;曲線的極坐標(biāo)方程為;曲線的參數(shù)方程為為參數(shù)).

(1)求直線的直角坐標(biāo)方程、曲線的直角坐標(biāo)方程和曲線的普通方程;

(2)若直線與曲線曲線在第一象限的交點(diǎn)分別為,求之間的距離.

【答案】(1), , ;(2).

【解析】試題分析:(1)利用代入法消去參數(shù)可得直線的普通方程,利用 即可得曲線的直角坐標(biāo)方程利用平方法可得曲線的普通方程;2)由求得交點(diǎn)坐標(biāo),利用兩點(diǎn)間的距離公式可得結(jié)果.

試題解:(1)直線的直角坐標(biāo)方程:

曲線的直角坐標(biāo)方程: ,

曲線的普通方程: .

2)由(1)知所以

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一列火車從重慶駛往北京,沿途有n個(gè)車站(包括起點(diǎn)站重慶和終點(diǎn)站北京).車上有一郵政車廂,每停靠一站便要卸下火車已經(jīng)過的各站發(fā)往該站的郵袋各1個(gè),同時(shí)又要裝上該站發(fā)往以后各站的郵袋各1個(gè),設(shè)從第k站出發(fā)時(shí),郵政車廂內(nèi)共有郵袋ak個(gè)(k=1,2,…,n).
(1)求數(shù)列{ak}的通項(xiàng)公式;
(2)當(dāng)k為何值時(shí),ak的值最大,求出ak的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+a(x﹣1)2,其中a>0.

(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;(2)討論函數(shù)f(x)的單調(diào)性;

(3)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) , 求解下列問題
(1)求函數(shù) 的最大值和最小正周期;
(2)設(shè) 的內(nèi)角 的對邊分別 , ,若 值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,圓錐SO的軸截面△SAB是邊長為4的正三角形,M為母線SB的中點(diǎn),過直線AM作平面β⊥面SAB,設(shè)β與圓錐側(cè)面的交線為橢圓C,則橢圓C的短半軸長為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年10月28日,經(jīng)歷了近半個(gè)世紀(jì)風(fēng)雨的南京長江大橋真“累”了,終于停下來喘口氣了,之前大橋在改善我們城市的交通狀況方面功不可沒.據(jù)相關(guān)數(shù)據(jù)統(tǒng)計(jì),一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到280輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過30輛/千米時(shí),車流速度為50千米/小時(shí).研究表明,當(dāng)30≤x≤280時(shí),車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤280時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時(shí)) f(x)=xv(x)可以達(dá)到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是(
A.y=x
B.y=
C.y=﹣x3
D.y=( x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,短軸長為2.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線與橢圓交于兩點(diǎn), 為坐標(biāo)原點(diǎn),若,求原點(diǎn)到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)在生物研究性學(xué)習(xí)中,對春季晝夜溫差大小與黃豆種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,于是他在4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

溫差

10

11

13

12

8

發(fā)芽數(shù)/顆

23

25

30

26

16

(1)從這5天中任選2天,求這2天發(fā)芽的種子數(shù)均不小于25的概率;

(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請根據(jù)這5天中的另三天的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為, .

查看答案和解析>>

同步練習(xí)冊答案