【題目】如圖,四棱錐中,是矩形,平面,,,四棱錐外接球的球心為,點是棱上的一個動點.給出如下命題:①直線與直線是異面直線;②與一定不垂直;③三棱錐的體積為定值;④的最小值為.其中正確命題的序號是______________.(將你認為正確的命題序號都填上)
【答案】①③④
【解析】
由題意畫出圖形,由異面直線的概念判斷①;利用線面垂直的判定與性質判斷②;找出球心,由棱錐底面積與高為定值判斷③;設,列出關于的函數(shù)式,結合其幾何意義求出最小值判斷④.
解:對于①,直線經過平面內的點,而直線在平面內不過,直線與直線是異面直線,故①正確;
對于②,當與重合時,,因為平面,平面,所以,又,平面,平面,平面,則垂直,故②錯誤;
對于③,由題意知,四棱錐的外接球的球心為是的中點,則△的面積為定值,且到平面的距離為定值,三棱錐的體積為定值,故③正確;
對于④,設,則,.
由其幾何意義,即平面內動點與兩定點,距離和的最小值知,其最小值為,故④正確.
故答案為:①③④.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角三棱柱中,、分別為、的中點,,.
(1)求證:平面;
(2)求證:平面平面;
(3)若直線和平面所成角的正弦值等于,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 過點,離心率為.
(1)求橢圓的方程;
(2), 是過點且互相垂直的兩條直線,其中交圓于, 兩點, 交橢圓于另一個點,求面積取得最大值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一個方格表.試求最小的正整數(shù),使得可以在方格表中畫出個矩形(其邊在網格線上),且方格表中的每個小方格的邊均包含在上述個矩形之一的邊上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.
方案一:每滿100元減20元;
方案二:滿100元可抽獎一次.具體規(guī)則是從裝有2個紅球、2個白球的箱子隨機取出3個球(逐個有放回地抽。媒Y果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
紅球個數(shù) | 3 | 2 | 1 | 0 |
實際付款 | 7折 | 8折 | 9折 | 原價 |
(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;
(2)若某顧客購物金額為180元,選擇哪種方案更劃算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出的普通方程和的直角坐標方程;
(2)設點在上,點在上,求的最小值及此時的直角坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com