分析 (1)根據(jù)奇函數(shù)得f(0)=0,再根據(jù)(1,f(1))處的切線與直線6x+y-3=0平行,求出切點(diǎn)坐標(biāo),根據(jù)切點(diǎn)處導(dǎo)數(shù)值為切線斜率列出關(guān)于a,b,c的方程組求出解;
(2)根據(jù)函數(shù)的性質(zhì)求出單調(diào)區(qū)間,然后求出最值即可.
解答 解:(1)∵f(x)為奇函數(shù),
∴f(-x)=-f(x),
即-ax3-bx+c=-ax3-bx-c,
∴c=0,
∴f′(x)=3ax2+b,
∵函數(shù)f(x)=ax3+bx+c(a≠0)的圖象在點(diǎn)x=1處的切線與直線6x+y+3=0平行,
∴f′(1)=3a+b=-6,
∵導(dǎo)函數(shù)f′(x)的圖象經(jīng)過(guò)點(diǎn)(0,-12),
∴b=-12,
∴a=2,
∴函數(shù)f(x)=2x3-12x;
(2)∵f(x)=2x3-12x,
∴f′(x)=6x2-12=6(x+$\sqrt{2}$)(x-$\sqrt{2}$),列表如下:
x | (-∞,-$\sqrt{2}$) | -$\sqrt{2}$ | (-$\sqrt{2}$,$\sqrt{2}$) | $\sqrt{2}$ | ($\sqrt{2}$,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 增 | 極大 | 減 | 極小 | 增 |
點(diǎn)評(píng) 本題考查函數(shù)的奇偶性、單調(diào)性、二次函數(shù)的最值、導(dǎo)數(shù)的應(yīng)用等基礎(chǔ)知識(shí),以及推理能力和運(yùn)算能力.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{\sqrt{2}}{2}$] | B. | (0,$\frac{\sqrt{3}}{3}$] | C. | [$\frac{\sqrt{3}}{3}$,1) | D. | [$\frac{\sqrt{2}}{2}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (3,-4,5) | B. | (-3,-4,-5) | C. | (3,-4,-5) | D. | (-3,4,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-1,0,1} | B. | {0,1,2} | C. | {0,1} | D. | {1,2} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com