設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn(λ為常數(shù)).令cn=b2n(n∈N)求數(shù)列{cn}的前n項(xiàng)和Rn
【答案】分析:(1)設(shè)出等差數(shù)列的首項(xiàng)和公差,由已知條件列關(guān)于首項(xiàng)和公差的方程組,解出首項(xiàng)和公差后可得數(shù)列{an}的通項(xiàng)公式;
(2)把{an}的通項(xiàng)公式代入,求出當(dāng)n≥2時(shí)的通項(xiàng)公式,然后由cn=b2n得數(shù)列{cn}的通項(xiàng)公式,最后利用錯(cuò)位相減法求其前n項(xiàng)和.
解答:解:(1)設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,由a2n=2an+1,取n=1,得a2=2a1+1,即a1-d+1=0①
再由S4=4S2,得,即d=2a1
聯(lián)立①、②得a1=1,d=2.
所以an=a1+(n-1)d=1+2(n-1)=2n-1;
(2)把a(bǔ)n=2n-1代入,得,則
所以b1=T1=λ-1,
當(dāng)n≥2時(shí),=
所以,
Rn=c1+c2+…+cn=

③-④得:=
所以
所以數(shù)列{cn}的前n項(xiàng)和
點(diǎn)評(píng):本題考查了等差數(shù)列的通項(xiàng)公式,考查了數(shù)列的求和,訓(xùn)練了錯(cuò)位相減法,考查了學(xué)生的計(jì)算能力,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn.若S2k=72,且ak+1=18-ak,則正整數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•山東)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為TnTn+
an+12n
(λ為常數(shù)).令cn=b2n(n∈N)求數(shù)列{cn}的前n項(xiàng)和Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)之和為Sn滿足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知(a4-1)3+2012(a4-1)=1,(a2009-1)3+2012(a2009-1)=-1,則下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S9=81,S6=36,則S3=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案