各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿(mǎn)足2(Sn+1)=an2+an(n∈Nn)(I)求數(shù)列{an}的通項(xiàng)公式;(II)記bn=2nan,求數(shù)列{bn}的前項(xiàng)和Tn.
分析:(I)通過(guò)仿寫(xiě)作差將和與項(xiàng)的遞推關(guān)系轉(zhuǎn)化為項(xiàng)間的遞推關(guān)系,利用等差數(shù)列的定義判斷出數(shù)列{an}為等差數(shù)列,利用等差數(shù)列的通項(xiàng)公式求出通項(xiàng).
(II)求出數(shù)列{bn}的通項(xiàng),據(jù)通項(xiàng)特點(diǎn),選擇利用錯(cuò)位相減法求數(shù)列的前n項(xiàng)和.
解答:解:(I)令n=1,則2(S
1+1)=a
12+a
1∴a
1=-1(舍)或a
1=2
當(dāng)n≥2時(shí),2(S
n+1)=a
n2+a
n
2(S
n-1+1)=a
n-12+a
n-1兩式相減得
2a
n=a
n2-a
n-12+a
n-a
n-1∵a
n>0
∴a
n-a
n-1=1
∴數(shù)列{a
n}為等差數(shù)列,首項(xiàng)為2,公差為1
∴a
n=n+1
(II)∵b
n=2
n•a
n=(n+1)•2
n∴T
n=2•2+3•2
2+4•2
3+…+n•2
n-1+(n+1)•2
n2T
n=2•2
2+3•2
3+…+n•2
n+(n+1)•2
n+1兩式相減得
-T
n=2+2+2
2+2
3+…+2
n-(n+1)•2
n+1=2+
-(n+1)•2n+1∴T
n=n•2
n+1 點(diǎn)評(píng):求數(shù)列的前n項(xiàng)和,首先求出數(shù)列的通項(xiàng),根據(jù)通項(xiàng)的特點(diǎn)選擇合適的求和方法,當(dāng)通項(xiàng)是一個(gè)等差數(shù)列與等比數(shù)列的乘積構(gòu)成的新數(shù)列,利用錯(cuò)位相減法求和.