【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)性;
(2)當(dāng)時,若函數(shù)的極值為e,求的值;
(3)當(dāng)時,若,求的取值范圍.
【答案】(1)在上單調(diào)遞減,在上單調(diào)遞增;(2);(3).
【解析】
(1)先求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系即可求出,
(2)根據(jù)導(dǎo)數(shù)和函數(shù)的極值的關(guān)系即可求出,
(3)根據(jù)函數(shù)的單調(diào)性和端點值以及最值,分類討論即可求出.
(1)當(dāng),,
,
由得,解得,
由得,解得,
所以在上單調(diào)遞減,在上單調(diào)遞增;
(2),
因,所以由得,解得,
所以在上單調(diào)遞增,可知在上單調(diào)遞減;
所以函數(shù)有極大值,無極小值,得極人值,
即,而顯然為增函數(shù).
又,所以,得.
(3)法一:(*),
①當(dāng)時,
過程一:由(*)式得,得.
而在上單調(diào)遞減,,上式不可能恒成立;
過程二:,,
可知(*)式不成立;
②當(dāng)時,由(*)式得,得.
而,由上式恒成立得;
綜上知.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
(1)若是定義域上的單調(diào)函數(shù),求的取值范圍.
(2)設(shè),分別為的極大值和極小值,若,求取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),
(1)求實數(shù)的值;
(2)如果對任意,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】美國一貫推行強(qiáng)權(quán)政治,2018年3月22日,美國總統(tǒng)特朗普在白宮簽署了對中國輸美產(chǎn)品征收關(guān)稅的總統(tǒng)備忘錄,限制中國商品進(jìn)入美國市場。中國某企業(yè)計劃打入美國市場,決定從A、B兩種產(chǎn)品中只選一種進(jìn)行投資生產(chǎn),已知投入生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬元)
年固定成本 | 每件產(chǎn)品成本 | 每件產(chǎn)品銷售價 | 每年最多可生產(chǎn)件數(shù) | |
A產(chǎn)品 | 40 | m | 15 | 200 |
B產(chǎn)品 | 60 | 10 | 22 | 150 |
其中固定成本與年生產(chǎn)的件數(shù)無關(guān),m是待定的常數(shù),其值由生產(chǎn)A產(chǎn)品的原材料決定,預(yù)計,另外,年銷售件B產(chǎn)品時需交0.05萬元的附件關(guān)稅,假設(shè)生產(chǎn)出來的產(chǎn)品都能在當(dāng)年銷售出去.
(1)求該廠分別投資生產(chǎn)A、B兩種產(chǎn)品的年利潤與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)之間的函數(shù)關(guān)系,并求出其定義域;
(2)如何投資才可獲得最大年利潤?請設(shè)計出投資方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店為了更好地規(guī)劃某種商品進(jìn)貨的量,該商店從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了組數(shù)據(jù)作為研究對象,如下圖所示((噸)為該商品進(jìn)貨量, (天)為銷售天數(shù)):
2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅰ)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格中繪制散點圖;
(Ⅱ)根據(jù)上表提供的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅲ)在該商品進(jìn)貨量(噸)不超過6(噸)的前提下任取兩個值,求該商品進(jìn)貨量(噸)恰有一個值不超過3(噸)的概率.
<>參考公式和數(shù)據(jù): ,.查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一袋中有大小相同的4個紅球和2個白球,給出下列結(jié)論:
①從中任取3球,恰有一個白球的概率是;
②從中有放回的取球6次,每次任取一球,則取到紅球次數(shù)的方差為;
③現(xiàn)從中不放回的取球2次,每次任取1球,則在第一次取到紅球的條件下,第二次再次取到紅球的概率為;
④從中有放回的取球3次,每次任取一球,則至少有一次取到紅球的概率為.
其中所有正確結(jié)論的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將4名志愿者分別安排到火車站、輪渡碼頭、機(jī)場工作,要求每一個地方至少安排一名志愿者,其中甲、乙兩名志愿者不安排在同一個地方工作,則不同的安排方法共有
A. 24種B. 30種C. 32種D. 36種
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com